
Effectively eliminating auxiliaries

Stijn de Gouw1,2 and Jurriaan Rot3,?

1 CWI, Amsterdam, The Netherlands
2 SDL, Amsterdam, The Netherlands

3 LIP, Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon,
INRIA, Université Claude-Bernard Lyon 1, Lyon, France

Abstract. Auxiliary variables are used in the intermediate steps of a
correctness proof to store additional information about the computation.
We investigate for which classes of programs auxiliary variables can be
avoided in the associated proof system, and give effective translations of
proofs whenever this is the case.

1 Introduction

Auxiliary variables aid verification by storing additional information about the
computation. Widely used instances include the recording of computation his-
tories and the explicit access to control points via program counters. Auxiliary
variables were first used by Clint [7] to prove properties about coroutines. Ow-
icki [19] and Howard [13] used auxiliaries for reasoning about concurrent pro-
grams. Apt [3, 1] used auxiliaries to obtain intermediate assertions that denote
decidable sets, which is useful for runtime checking. Recent applications of aux-
iliary variables are found in the Java Modeling Language [5], where they are
called ghost variables. The power of auxiliaries is further illustrated by the fact
that Frank de Boer himself advocated their use [8].

Auxiliaries are used temporarily, in the intermediate steps of a correctness
proof, by instrumenting the program with assignments. A rule by Owicki and
Gries [20] removes auxiliaries in a later proof step. As argued by Clarke [6], this
use of auxiliary variables breaks compositionality, since the program fragments
in the premise of the rule are not strict subprograms of that in the conclusion.
Compositionality is crucial for a modular, syntax-directed proof construction.

Naturally the question arises: can auxiliary variables be avoided? This is
the case for while programs and for recursive programs, since they have rela-
tive complete proof systems that do not contain Owicki and Gries’ rule. Clarke
showed that auxiliaries can be avoided in correctness proofs of programs with
so-called simple coroutines, and raised the question whether history variables are
necessary for concurrent programs with shared variables. Lamport [16] showed

? The research of the second author was carried out at Leiden University and CWI.
The second author is supported by the LABEX MILYON (ANR-10-LABX-0070) of
Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-
0007) operated by the French National Research Agency (ANR).

that the full power of histories is not needed, but that using auxiliary variables
as program counters suffices. To the best of our knowledge, it remained open
whether auxiliary variables can be eliminated entirely.

In this paper we investigate for which classes of programs auxiliary variables
can be avoided, and aim to give effective translations of proofs whenever this is
possible. Hoffmann and Pavlova [12] gave such a translation for while programs,
and we previously announced (without proof) a similar result for recursive pro-
grams [9], where it was applied to a practical example. Here we give the full
translation, relying on so-called adaptation rules.

We introduce a translation from proofs of disjoint parallel programs using
auxiliary variables, to proofs that do not. Our proof system uses adaptation rules
instead of Owicki/Gries’ rule for auxiliary variables, and technically relies on
existentially quantifying auxiliary variables in specifications. Thereby, we show
that, contrary to what is suggested in [4], auxiliary variables are not needed for
disjoint parallel programs in the presence of suitable adaptation rules.

For programs with shared variable concurrency, we show that auxiliary vari-
ables are essential, in the sense that the associated rule cannot be replaced by any
set of adaptation rules. This answers the open question by Clarke [6] “whether
there is a proof system similar to the one originally described by Owicki which
does not require the use of history variables” and confirms Kleymann’s intuition
that this is not case [15].

2 Preliminaries

We first fix some notation. Throughout this paper, we consider the usual inter-
pretation of Hoare triples {p} S {q} with respect to partial correctness. We use
a first-order assertion language. Given an assertion p, we denote its free variables
by free(p), substitution of a term t for a variable x in p by p[x := t] and in a term
t′ by t′[x := t]. The variables in a term t are denoted by var(t). For a statement
S (statements will be defined in subsequent sections) we denote by var(S) the
variables occurring in S, and by change(S) the variables that occur on the left-
hand side of an assignment in S. Given a list of variables z̄, the statement (S)z̄
is obtained from S by removing all assignments to variables in z̄ (using skip if S
becomes empty), and z̄|S is the sublist of variables in z̄ that occur in change(S),
i.e., z̄|S = z̄ ∩ change(S). We abuse notation by using set-theoretic operations
on lists, as in the previous line.

2.1 Auxiliary variables

Auxiliary variables store information about the computation. Formally, they are
defined as follows.

Definition 1. A closed list of auxiliary variables z̄ for a given program is a
sequence of program variables that appear only in assignments of the form u := x,
where u is a variable in z̄.

The following rule, introduced by Owicki and Gries [20], allows to eliminate
auxiliary variables in order to obtain the intended correctness triple:

{p} S {q}
{p} (S)ū {q}

(OG)

where ū is a closed list of auxiliary variables for S, and ū ∩ free(q) = ∅.

2.2 Adaptation rules

Support for modular reasoning in Hoare logic requires adaptation rules to adapt
the specifications of Hoare triples to a specific context. The simplest example of
an adaptation rule is the usual consequence rule. Adaptation rules are further-
more essential for proof systems about recursive procedures [2]. We briefly recall
several adaptation rules taken from [4] (Figure 1) and [18] (Rule OLD).

{p} S {q}
{p ∧ r} S {q ∧ r} (INV)

{p} S {q}
{∃l.p} S {q} (∃-IN)

where free(r) ∩ change(S) = ∅ where l 6∈ free(q) and l 6∈ var(S)

{p} S {q}
{p[l := t]} S {l := t} (SUBST)

p0→p1,{p1} S {q1},q1→q0

{p0} S {q0} (CONS)

where l 6∈ var(S) and var(t) ∩ change(S) = ∅

Fig. 1. Adaptation rules

Rule INV provides a basic way to reason about assertions whose truth remains
invariant under execution of S. Rule SUBST instantiates a logical variable. Rule
∃-IN allows weakening preconditions under certain conditions. Figure 2 shows
an example derivation using some of these rules.

{p} S {q} q → ∃z.q
{p} S {∃z.q}

(CONS)

{∃z.p} S {∃z.q}
(∃-IN)

Fig. 2. Adding existential quantifiers

Definition 2 (Adaptation completeness). A proof system for a class of pro-
grams (ranged over by S) is adaptation complete if for all p, q, p′, q′: if

∀S. |= {p} S {q} implies |= {p′} S {q′}

then any derivation of {p} S {q} can be extended to a derivation of {p′} S {q′}
(by only adding rule applications to the derivation).

Remark 1. In the definition of adaptation completeness, one usually restricts
to satisfiable correctness triples. Partial correctness avoids this extra condition,
since all correctness triples are satisfiable.

To obtain an adaptation complete proof system, we use an approach due to
Olderog [18]. Given assertions p, q, r and a sequence of variables x̄, consider the
following assertion:

∀ȳ(∀z̄(p→ q[x̄ := ȳ])→ r[x̄ := ȳ]) (1)

where ȳ is a sequence of fresh variables (not occurring in p, q or r) of the same
length as x̄, and z̄ = free(p, q)\{x̄}. The crucial property of the assertion (1) is:

Lemma 1 (Olderog Adaptation completeness). The assertion (1) is the
weakest assertion w such that |= {w} S {r} for all finitely based state transform-
ers4 S with var(S) = x̄ and |= {p} S {q}.

Proof. See the text above Proposition 4.1 in [18]. ut

We use assertion (1) to define an adaptation rule:

p′ → (∀ȳ(∀z̄(p→ q[x̄ := ȳ])→ q′[x̄ := ȳ])) {p} S {q}
{p′} S {q′}

(OLD)

with z̄ and ȳ defined as in (1), and x̄ = var(S) the list of program variables.
By Lemma 1 it is straightforward to show that adding Rule OLD yields a

proof system that is adaptation complete. In particular, Rule OLD satisfies the
following two properties (not unexpectedly, given its adaptation completeness).

Lemma 2 (Other adaptation rules redundant). The adaptation rules given
in Figure 1 are derivable with Rule OLD.

Lemma 3 (Collapsing consecutive applications of Rule OLD). Multiple
consecutive applications of Rule OLD can be replaced by a single application.

3 While programs

While programs form the basic building blocks for all the other classes of pro-
grams defined in the next sections. The syntax of while programs is as follows.

S ::= skip | u := t | S1;S2 | if b then S1 else S2 fi | while b do S od

Figure 3 shows the standard proof system introduced by Hoare [10].

4 Intuitively, a state transformer is finitely based if it reads and writes finitely many
variables. See [18] for a precise definition.

{p} skip {p} (SKIP)
{p ∧ ¬B} S1 {q},{p ∧B} S2 {q}
{p} if B then S1 else S2 fi {q} (COND)

{p[u := t]} u := t {p} (ASGN)
{p ∧B} S {p}

{p} while B do S od {p ∧ ¬B} (LOOP)

{p} S1 {r},{r} S2 {q}
{p} S1;S2 {q} (SEQ)

p0→p1,{p1} S {q1},q1→q0

{p0} S {q0} (CONS)

Fig. 3. Proof system PW

The next theorem shows that we can translate proofs of while-programs that
use auxiliary variables to proofs without. Every rule application in the original
proof is substituted, without having to consider the context of the enclosing
proof, by at most three rule applications in the new proof. The translation is
syntactic (no new loop invariants have to be invented) and fully automatic.

Theorem 1 (Auxiliary variables redundant for while programs). Let
z be a closed list of auxiliary variables for a statement S. There is an effec-
tive translation from any proof in PW + Rule OG of {p} S {q} into a proof of
{∃z̄.p} (S)z̄ {∃z̄.q} in PW.

Proof. The translation is defined by induction on the derivation. We proceed by
a case distinction on the last proof rule applied in the derivation of {p} S {q}.

– Rule SKIP. The desired {∃z.p} skip {∃z.p} follows by Rule SKIP.
– Rule ASGN. Then {p} S {q} has the form {p[u := t]} u := t {p}. First note

that for any assertion p and term t:

(∃u.p[u := t])→ (∃u.p) . (2)

Next, we distinguish two cases:
1. u is an auxiliary variable, which implies u ∈ z. Since (u := t)u is skip, we

must find a derivation of {∃z.p[u := t]} skip {∃z.p}. By Rule SKIP we
have {∃z.p[u := t]} skip {∃z.p[u := t]}. Thus the desired result follows
from (2) by an application of Rule CONS.

2. u is a program variable, which entails u 6∈ z and var(t) ∩ z = ∅. Then
{(∃z.p)[u := t]} u := t {∃z.p}, by Rule ASGN, and since u does not occur
in z, by Rule CONS: {∃z̄.p[u := t]} u := t {∃z̄.p}.

– Rule SEQ. Then {p} S1 {r} and {r} S2 {q} are derivable (for some interme-
diate assertion r). The induction hypothesis gives {∃z̄.p} (S1)z̄ {∃z̄.r} and
{∃z̄.r} (S2)z̄ {∃z̄.q}. If (S1)z̄ = skip and (S1;S2)z̄ = (S2)z̄ (when S1 consists
of assignments to auxiliary variables) then the triple {∃z̄.p} (S1;S2)z̄ {∃z̄.q}
follows by Rule CONS (similarly for the case (S2)z̄ = skip and (S1;S2)z̄ =
(S1)z̄). Otherwise {∃z̄.p} (S1;S2)z̄ {∃z̄.q} follows by Rule SEQ.

– Rule COND. Then {p ∧B} S1 {q} and {p ∧ ¬B} S2 {q} are derivable, and
var(B) ∩ z̄ = ∅ (since auxiliaries do not occur in guards). By the induction

hypothesis: {∃z̄.(p ∧B)} (S1)z̄ {∃z̄.q} and {∃z̄.(p ∧ ¬B)} (S2)z̄ {∃z̄.q}. Be-
cause var(B)∩ z̄ = ∅, applying Rule CONS yields {(∃z̄.p) ∧B} (S1)z̄ {∃z̄.q}
and {(∃z̄.p) ∧ ¬B} (S2)z̄ {∃z̄.q}. Finally, by applying Rule COND we obtain
{∃z̄.p} (if B then S1 else S2 fi)z̄ {∃z̄.q}.

– Rule LOOP. Then {p ∧B} S {p} is derivable and var(B) ∩ z̄ = ∅. By the
induction hypothesis: {∃z̄.(p ∧B)} (S)z̄ {∃z̄.p}. Because var(B) ∩ z̄ = ∅,
applying Rule CONS yields {(∃z̄.p) ∧B} (S)z̄ {∃z̄.p}. Rule LOOP yields
{∃z̄.p} (while B do S od)z̄ {(∃z̄.p) ∧ ¬B}.

– Rule CONS. Then p0 → p1 and q1 → q0 are valid, and {p1} S {q1} is deriv-
able. By the induction hypothesis: {∃z̄.p1} (S)z̄ {∃z̄.q1}. Observe that for
any assertion p and q, if p → q is valid, then so is (∃z̄.p) → (∃z̄.p). Hence
from p0 → p1 and q1 → q0 we may deduce (∃z̄.p0)→ (∃z̄.p1) and (∃z̄.q1)→
(∃z̄.q0). Applying Rule CONS we obtain the desired {∃z̄.p0} (S)z̄ {∃z̄.q0}

– Rule OG. Then {p} S {q} is derivable, ū is the list of auxiliaries used in the
application of the rule, and q does not contain any variables from ū. Our
goal is to prove {∃z̄.p} ((S)ū)z̄ {∃z̄.q}. Applying the induction hypothesis
with ū, z̄ as the auxiliaries yields {∃ūz̄.p} (S)ūz̄ {∃ūz̄.q}. Clearly (∃z̄.p) →
(∃ūz̄.p), and since q does not contain ū we also have (∃ūz̄.q)→ (∃z̄.q), thus
our goal follows from Rule CONS. ut

By instantiating Theorem 1 to the empty sequence of auxiliaries, we obtain:

Corollary 1 (Auxiliary variables redundant for while programs). There
is an effective translation from any proof in PW + Rule OG of {p} S {q} into a
proof of {p} S {q} in PW.

4 Recursive programs

Programs with recursive procedures consist of a set of procedure declarations
D = {Pi :: Si | 1 ≤ i ≤ n} and a main-statement S, where Pi is a procedure
name and Si and S are statements extending while-programs (Section 3) with:

S ::= Pi

which denotes a call to procedure Pi. The corresponding proof system requires a
new ingredient: recursive procedures are proven correct under a set of assump-
tions about procedures. The assumptions are later discharged in a proof rule for
procedure calls. Consequently, the statements that we derive with the proof sys-
tem are not Hoare triples, but quadruples of the form A ` {p} D|S {q} where
A is a set of assumptions about the procedures P1, . . . , Pn (i.e. Hoare triples
{pi} Pi {qi}), and D|S is a statement that can use the procedures declared in
D (we omit D if it is clear from the context). Formally this requires adding sets
of assumptions to all proof rules for while-programs given in Figure 3, but since
these changes are obvious (the rules are independent of the assumptions and do
not manipulate them), we omit them. Two rules are introduced for reasoning
about calls (Figure 4). Rule ASMP shows how we can use the assumptions. Rule

CALL discharges the assumptions, provided that we can prove the procedure
body Si and the main-statement S using them. Besides these two new rules, to
obtain a complete proof system, it turns out that the adaptation rules intro-
duced in Section 2 (with additionally a set of assumptions) are also needed [2].
This leads us to the following formal definition of the proof system.

Definition 3 (Proof system for recursion). Proof system PR consists of

– The rules in Figure 4,
– The rules from PW (Figure 3) under a set of assumptions,
– The adaptation rules (Figure 1) under a set of assumptions.

A ` {p} D|S {q} (ASMP)
if ({p} D|S {q}) ∈ A

A`{pi} D|Si {qi} for i=1,...,n A`{p} D|S {q}
`{p} D|S {q} (CALL)

where D = {Pi :: Si | 1 ≤ i ≤ n}

Fig. 4. New proof rules in proof system PR

For recursive programs, the definition of change(. . .) is extended in the obvi-
ous way: change(D|S) is the set of variables changed in S or any of the procedures
called by S (declared in D). Along the same lines, z̄|(D|S) is the sublist of vari-
ables from z̄ changed by S or the procedures called by S. Furthermore, (D|S)z̄
is the program obtained from the statement S and procedure declarations D by
removing all assignments to variables in z̄ from S and the procedure bodies in
D. The next definition uses these concepts to translate specifications.

Definition 4 (Translating specifications). Given a set of n Hoare triples
A = {{pi} Si {qi} | i = 1, . . . , n} and a closed list of auxiliary variables z̄,
we define the translation TRANS(A, z̄) by
A = {{∃z̄|(D|Si).pi} (D|Si)z̄ {∃z̄|(D|Si).qi} | i = 1, . . . , n}.

The above translation requires no creativity to find appropriate procedure
specifications; it can be performed fully mechanically. Using the new specifica-
tions, the below theorem shows that auxiliary variables can be avoided in proofs,
deleting the auxiliaries from the main statement and all procedure bodies.

Theorem 2 (Removing auxiliaries). Let z̄ be a closed list of auxiliary vari-
ables for a recursive program D|S. There is an effective translation from any
proof in PR + Rule OG of A ` {p} D|S {q} into a proof of TRANS(A, z̄) `
{∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q} in PR.

Proof. The translation is defined by induction on the derivation, with a case
analysis on the last proof rule applied in the derivation of A ` {p} D|S {q}. For
readability we omit D if it is clear from the context.

– Rule SKIP. We need to prove {∃z̄|skip.p} skip {∃z̄|skip.p} which is trivial,

since z̄|skip is empty.

– Rule ASGN. Then {p} S {q} has the form {p[u := t]} u := t {p}, and we
need to give a proof of {∃z̄|u := t.[u := t]} u := t {∃z̄|u := t.p}. If u ∈ z̄
then z̄|u := t = u and {∃u.p[u := t]} skip {∃u.p} is derived as in the proof
of Theorem 1. If u 6∈ z̄ then z̄|u := t is empty, so no translation is necessary.

– Rule SEQ. Then {p} S1 {r} and {r} S2 {q} are derivable. By the induction
hypothesis, we get {∃z̄|S1 .p} (S1)z̄ {∃z̄|S1 .r} and {∃z̄|S2 .r} (S2)z̄ {∃z̄|S2 .q}.
Now since change(Si) ⊆ change(S1;S2) and z̄ ∩ (S1;S2)z̄ = ∅, by Figure 2
we get {∃z̄|S1;S2

.p} (S1)z̄ {∃z̄|S1;S2
.r} and {∃z̄|S1;S2

.r} (S2)z̄ {∃z̄|S1;S2
.q}.

If (S1)z̄ = skip and (S1;S2)z̄ = (S2)z̄ (when S1 consists of assignments to
auxiliary variables) then {∃z̄|S1;S2 .p} (S1;S2)z̄ {∃z̄|S1;S2 .q} follows by Rule
CONS (similarly for the case (S2)z̄ = skip and (S1;S2)z̄ = (S1)z̄). Otherwise,
{∃z̄|S1;S2

.p} (S1;S2)z̄ {∃z̄|S1;S2
.q} follows by Rule SEQ.

– Rule COND, LOOP and CONS are treated similarly to the proof of Theo-
rem 1. For COND we use Figure 2 in the same way as in the above treatment
of SEQ to extend the proofs of {∃z̄|Si

.pi} (Si)z̄ {∃z̄|Si
.qi} for i ∈ {1, 2} that

come from the induction hypothesis to proofs of {∃z̄|S .pi} (S)z̄ {∃z̄|S .pi}
where S = if B then S1 else S2 fi.

– Rule INV. Then {p} S {q} is derivable, and r is an assertion with free(r) ∩
change(S) = ∅. By the induction hypothesis we infer {∃z̄|S .p} (S)z̄ {∃z̄|S .q} .
Applying the invariance rule gives {(∃z̄|S .p) ∧ r} (S)z̄ {(∃z̄|S .q) ∧ r} . Since
z̄|S and free(r) are disjoint, we have for any assertion p: (∃z̄|S .p ∧ r) ↔
((∃z̄|S .p) ∧ r), thus Rule CONS yields {∃z̄|S .p ∧ r} (S)z̄ {∃z̄|S .q ∧ r} .

– Rule ∃-IN. Then {p} D|S {q} is derivable and l does not occur in S, D and
q. The induction hypothesis gives us {∃z̄|S .p} (D|S)z̄ {∃z̄|S .q} . Since l also
does not occur in (D|S)z̄ we apply Rule ∃-IN: {∃l.∃z̄|S .p} (D|S)z̄ {∃z̄|S .q} .
Finally, the consequence rule gives {∃z̄|S .∃l.p} (D|S)z̄ {∃z̄|S .q} .

– Rule SUBST. Then {p} D|S {q} is derivable, l does not occur in D or S and
var(t) ∩ change(S) = ∅. By the ind. hypothesis: {∃z̄|S .p} (D|S)z̄ {∃z̄|S .q} .
From Rule SUBST: {(∃z̄|(D|S).p)[l := t]} (D|S)z̄ {(∃z̄|(D|S).q)[l := t]} . Since
z̄|(D|S) only contains variables that are changed, it is disjoint from l and
var(t), thus for any formula p we have the equivalence (∃z̄|(D|S).p)[l := t]↔
(∃z̄|(D|S).p[l := t]). Hence, Rule CONS gives the desired correctness formula
{∃z̄|(D|S).p[l := t]} (D|S)z̄ {∃z̄|(D|S).q[l := t]} .

– Rule ASMP. Then ({p} D|S {q}) ∈ A. The definition of TRANS(A, z̄) im-
plies that ({∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q}) ∈ TRANS(A, z̄). Therefore
TRANS(A, z̄) ` {∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q} follows from Rule ASMP.

– Rule CALL. Then A ` {pi} D|Si {qi} for i = 1, . . . , n and A ` {p} D|S {q}
are derivable. The induction hypothesis gives us
TRANS(A, z̄) ` {∃z̄|(D|S).pi} (D|Si)z̄ {∃z̄|(D|S).qi} for i = 1, . . . , n, and
TRANS(A, z̄) ` {∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q} . Thus we can apply Rule
CALL to obtain the desired ` {∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q} .

– Rule OG. Then {p} S {q} is derivable, ū is the list of auxiliaries used in the
application of the rule, and q does not contain ū. Our goal is to prove

{∃z̄|(S)ū .p} ((S)ū)z̄ {∃z̄|(S)ū .q} .

An application of the induction hypothesis with ū, z̄ as the auxiliaries gives
us {∃ūz̄|S .p} (S)ūz̄ {∃ūz̄|S .q}. Since change((S)ū) ⊆ change(S) we have
(∃z̄|(S)ū .p)→ (∃ūz̄|S .p). Since q does not contain ū we also have (∃ūz̄|S .q)→
(∃z̄|(S)ū .q), thus our goal follows from Rule CONS. ut

Example 1. In [9], we proved the correctness of two sorting algorithms: Counting
sort and Radix sort. Radix sort relies on an external sorting algorithm (Counting
sort, for instance), and for its correctness it is crucial that the external sorting
algorithm is stable, which means that equal elements in the input array appear
in the same order in the output array. We formalized stability using an auxiliary
array variable idx that keeps track of the original index in the input array of
each element in the output array. This proves correctness with respect to an
external (stable) sorting algorithm that updates idx appropriately. We would like
to apply Theorem 2 (which appeared in a slightly different form in [9], without
proof) to eliminate idx from the program, showing that Radix sort is correct
whenever the external sorting algorithm is stable (without having to update idx).
This is almost possible; the only small technical issue is that we assumed our
assertion language to be first-order, while the translation of Theorem 2 relies on
existentially quantifying the auxiliary (array) variable idx , thus we need second-
order quantification. We leave a careful treatment of eliminating auxiliary array
variables for future work.

From Theorem 2, we obtain an analogue of Corollary 1 for recursion.

Corollary 2 (Auxiliary variables redundant for recursive programs).
There is an effective translation from any proof in PR + Rule OG of A `
{p} D|S {q} into a proof of A ` {p} D|S {q} in PR.

5 Disjoint parallel programs

The syntax of disjoint parallel programs extends the syntax of while programs
with a parallel operator:

[S1|| . . . ||Sn]

for any n ≥ 2, syntactically restricted to statements S1, . . . , Sn that are disjoint,
which means that change(Si) ∩ var(Sj) = ∅ for all i, j ∈ {1, . . . , n} with i 6= j.

The semantics of the parallel operator is modeled as usual by interleaving.
The main proof rule for dealing with the parallel operator is as follows [11, 4]:

{pi} Si {qi} for i = 1 . . . n

{
∧n

i=1 pi} [S1|| . . . ||Sn] {
∧n

i=1 qi}
(PDJ)

where for all i, j with i 6= j: free(pi, qi) ∩ change(Sj)) = ∅.
Adding the above Rule PDJ to PW does not yield a satisfactory proof system,

as shown by the next result (Exercise 7.9 in [4]).

Theorem 3 (Incompleteness of PW + Rule PDJ). The triple

{x = y} [x := x + 1||y := y + 1] {x = y}

is not provable in PW + Rule PDJ.

Proof. Suppose for a contradiction that {x = y} [x := x + 1||y := y + 1] {x = y}
has a proof. This proof must include an application of Rule PDJ:

{p1} x := x + 1 {q1} {p2} y := y + 1 {q2}
{p1 ∧ p2} [x := x + 1||y := y + 1] {q1 ∧ q2}

(3)

The only possible way that the proof can continue is by an application of
Rule CONS, so the formulas below must be valid:

x = y → p1 ∧ p2 , (4)

q1 ∧ q2 → x = y . (5)

By the premise of the rule application (3), we have

pi → qi[x := x + 1] for i ∈ {1, 2} . (6)

In particular, we have p1[x := y]→ q1[x := y + 1]. But p1[x := y] is valid by (4),
and thus

q1[x := y + 1]

is valid. Instantiating y to x− 1 then yields the validity of q1.
In a similar way, we derive the validity of q2. But this means that q1 ∧ q2 is

equivalent to true, which contradicts (5). ut

The incompleteness result of Theorem 3 was introduced in [4] as a motivation
for auxiliary variables.

Example 2. To see the use of auxiliary variables for disjoint parallel programs,
we recall from [4] a proof of the triple {x = y} [x := x + 1||y := y + 1] {x = y}
that uses an auxiliary variable together with Rule OG. Given a fresh variable z
(i.e., x 6= z and y 6= z), the correctness triples

{x = z} x := x + 1 {x = z + 1} and {y = z} y := y + 1 {y = z + 1}

are proved by Rule ASGN. Using Rule PDJ we get

{x = z ∧ y = z} [x := x + 1||y := y + 1] {x = z + 1 ∧ y = z + 1} .

Now, consider the assignment z := x. Using Rule ASGN (and a simple application
of Rule CONS) we get {x = y} z := x {x = z ∧ y = z} and, using Rule SEQ:

{x = y} z := x; [x := x + 1||y := y + 1] {x = z + 1 ∧ y = z + 1}

from which we derive

{x = y} z := x; [x := x + 1||y := y + 1] {x = y}

by Rule CONS. Since z does not appear in the postcondition x = y, we may use
Rule OG to obtain {x = y} [x := x + 1||y := y + 1] {x = y}.

It turns out that auxiliary variables are not necessary in the presence of
suitable adaptation rules. This is shown by the next result, which generalizes
the translation given in Theorem 1 to disjoint parallel programs.

Theorem 4 (Auxiliary variables redundant for disjoint parallelism).
Let z̄ be a closed list of auxiliary variables occurring in a disjoint parallel program
S. There is an effective translation from any proof in PW + Rules PDJ and OG
of {p} S {q} into a proof of {∃z̄|S .p} (S)z̄ {∃z̄|S .q} in PW + Rules PDJ, ∃-IN.

Proof. The proof is by induction on the derivation, similar to that of Theorem 2.
The only remaining case (not treated in the proof of Theorem 2) is Rule PDJ.

– Rule PDJ. Then {pi} Si {qi} is derivable for i ∈ {1, . . . , n}, and Rule PDJ is
applied to get {

∧n
i=1 pi} [S1|| . . . ||Sn] {

∧n
i=1 qi}. By the induction hypothesis

we have proofs of {∃z̄|Si
.pi} (Si)z̄ {∃z̄|Si

.qi} for i ∈ {1, . . . , n}. Let S =
[S1|| . . . ||Sn]; by Figure 2 we obtain proofs of {∃z̄|S .pi} (Si)z̄ {∃z̄|S .qi} for
i ∈ {1, . . . , n}. Now applying Rule PDJ yields

{
∧n

i=1(∃z̄|S .pi)} (S)z̄ {
∧n

i=1(∃z̄|S .qi)} . (7)

For any z ∈ z̄|S , we have that z appears in exactly one of the Si’s, since
the component programs are disjoint; say, in Si. By the side-condition of the
application of Rule PDJ in the original proof, we know that this means that
z does not appear in any qj with j 6= i. Therefore, we have the implication

(

n∧
i=1

∃z̄|S .qi)→ ∃z̄|S .
n∧

i=1

qi .

Moreover, there is the easy implication (∃z̄|S .
∧n

i=1 pi) →
∧n

i=1(∃z̄|S .pi).
By (7), these two implications and Rule CONS, we conclude

{∃z̄|S .
∧n

i=1 pi} (S)z̄ {∃z̄|S .
∧n

i=1 qi}

as desired. ut

Similar to the case of while and recursive programs, we obtain:

Corollary 3 (Auxiliary variables redundant for disjoint parallelism).
There is an effective translation from any proof in PW + Rules PDJ, OG of
{p} S {q} into a proof of {p} S {q} in PW + Rules PDJ, ∃-IN.

Example 3. We apply the translation of Theorem 4 to the proof of Example 2,
choosing the empty sequence of auxiliaries (since there is no auxiliary to remove
from the correctness triple we want to prove). The last rule application in that
proof is Rule OG, which is translated to an application of Rule CONS:

{∃z(x = y)} [x := x + 1||y := y + 1] {∃z(x = y)}
{x = y} [x := x + 1||y := y + 1] {x = y}

(CONS)

The proof of the correctness triple in the premise is a translation of the original
proof of {x = y} z := x; [x := x + 1||y := y + 1] {x = y} where the single vari-
able z is chosen as the sequence of auxiliaries that are to be eliminated. It thus
concludes with the translation of Rule CONS, with the premise (in the translated
proof):

{∃z(x = y)} [x := x + 1||y := y + 1] {∃z(x = z + 1 ∧ y = z + 1)} .

This, in turn, arises from the translation of Rule SEQ, which concludes with
an application of Rule CONS (since the assignment z := x is eliminated), with
premises:

∃z(x = y)→ ∃z(x = z ∧ y = z) and (8)

{∃z(x = z ∧ y = z)} [x := x + 1||y := y + 1] {∃z(x = z + 1 ∧ y = z + 1)} (9)

where (9) is derived from

{x = z ∧ y = z} [x := x + 1||y := y + 1] {x = z + 1 ∧ y = z + 1}

using Figure 2 (in the translation of Rule SEQ). The translated proof of the
latter triple is the same as that of the original (see Example 2) since z does not
appear in the statement.

6 Parallel programs with shared variables

Parallel programs extend while-programs with a parallel operator [S1|| . . . ||Sn]
for every n > 1 and an atomic region operator 〈S〉. Contrary to disjoint parallel
programs considered in the previous section, here we make no assumptions on the
statements appearing in [S1|| . . . ||Sn]; in particular, this allows shared variables
between different Si’s. For instance, in the current setting, we allow the program

[x := x + 2||x := 0] (10)

but the arguments of the parallel operator are not disjoint.
For the atomic region, we have the following rule:

{p} S {q}
{p} 〈S〉 {q}

(AT)

To reason about parallel composition, we use the notion of non-interference.
Intuitively it expresses when an assertion is preserved by a given proof.

Definition 5 (Non-interfering proofs). A proof of {p} S {q} does not in-
terfere with a proof of {p′} S′ {q′} if for all assertions r occurring outside of an
atomic region in {p′} S′ {q′} and any sub statement T of S occurring outside an
atomic region, we have {pre(T) ∧ r} T {r}, for any assertion pre(T) occurring
as a precondition of T in the proof of {p} S {q}.

The proof rule for the parallel operator is:

Non-interfering proofs of {pi} Si {qi} for i = 1 . . . n

{
∧n

i=1 pi} [S1|| . . . ||Sn] {
∧n

i=1 qi}
(PSV)

In [4] the premise of Rule PSV is formulated in terms of proof outlines. We refer
to [4] for soundness and more details of these rules.

The proof system PW together with the above Rules PSV, AT is incomplete
for the validity of correctness triples involving parallel programs with shared
variables. Indeed, in [4, Lemma 8.6] it is shown that the triple

{true} [x := x + 2||x := 0] {x = 0 ∨ x = 2}

is not provable using only PW + Rules PSV, AT. It is then shown that the above
triple is provable using auxiliary variables together with Rule OG. In fact, the
proof system PW + Rules PSV, AT, OG is complete [19].

One might expect that, similar to the treatment of disjoint parallelism in
the previous section, we can again replace the rule for elimination of auxiliary
variables by adaptation rules, while preserving completeness. However, as we
show below in Theorem 5, that approach does not work: the proof system PW +
Rules PSV,AT remains incomplete even with the addition of arbitrary adaptation
rules. As explained in Section 2, the notion of “arbitrary adaptation rules” is
captured precisely by adaptation completeness. Therefore, we use Rule OLD,
which is adaptation complete for finitely based state transformers. (Whether it
is adaptation complete for our parallel programs is open. Finitely based state
transformers may be a larger class of programs than our parallel programs.
Hence, for disjoint parallel programs there may be an adaptation rule which is
stronger than Rule OLD.)

Theorem 5 (Auxiliaries needed for shared variable parallelism).
The triple

{true} [x := x + 2||x := 0] {x = 0 ∨ x = 2}

is not provable in PW + Rules AT, PSV, OLD.

Proof. Assume that {true} [x := x + 2||x := 0] {x = 0 ∨ x = 2} has a proof in
PW + Rules AT, PSV, OLD. We show that this leads to a contradiction. The
proof must include an application of Rule PSV:

{p1} x := x + 2 {q1} {p2} x := 0 {q2}
{p1 ∧ p2} [x := x + 2||x := 0] {q1 ∧ q2}

(PSV)
(11)

where the proofs of {p1} x := x + 2 {q1} and {p2} x := 0 {q2} are interference
free. By Lemma 2 and Lemma 3 we can assume without loss of generality that
the proof then concludes immediately, with a single application of Rule OLD:

true→ ∀y(∀z̄(p1 ∧ p2 → (q1 ∧ q2)[x := y])→ y = 0 ∨ y = 2)
{p1 ∧ p2} [x := x + 2||x := 0] {q1 ∧ q2}

{true} [x := x + 2||x := 0] {x = 0 ∨ x = 2}
(OLD)

with z̄ = free(p1, p2, q1, q2)\{x}. Instantiating the first premise with x = 2, y = 4
implies ∀z((p1 ∧ p2)[x := 2]→ (q1 ∧ q2)[x := 4])→ false, which is equivalent to

∃z̄(p1[x := 2] ∧ p2[x := 2] ∧ ¬(q1 ∧ q2)[x := 4]) . (12)

As we will see below, this leads to a contradiction with the side conditions and
premises of the application (11), which we list first. Validity of the premises
implies

1. p1 → q1[x := x + 2] and
2. p2 → q2[x := 0].

and the interference freedom conditions amount to the validity of

3. p1 ∧ p2 → p1[x := 0],
4. p1 ∧ p2 → p2[x := x + 2],
5. q1 ∧ p2 → q1[x := 0] and
6. q2 ∧ p1 → q2[x := x + 2].

(Note that z̄ may occur in p1, p2, q1 or q2 and is implicitly universally quantified.)
By (12) we may choose a valuation for z̄ under which the following formulas hold:

7. p1[x := 2],
8. p2[x := 2] and
9. ¬(q1 ∧ q2)[x := 4].

Together with the above validities, we derive (under the same valuation):

10. q1[x := 4] (by 1, 7),
11. q2[x := 0] (by 2, 8),
12. p1[x := 0] (by 3, 7, 8),
13. q2[x := 2] (by 6, 11, 12),
14. q2[x := 4] (by 6, 7, 13) and
15. (q1 ∧ q2)[x := 4] (by 10, 14).

But 9 is in contradiction with 15 (note that we do not use 4 and 5). ut

Remark 2. Theorem 5 strengthens [4, Lemma 8.6]: the latter is an incomplete-
ness result for PW + Rules AT, PSV, CONS, but Rule CONS is subsumed by
Rule OLD (see Section 2.2). For the proof system that includes OLD, the proof
of [4, Lemma 8.6] immediately breaks, since it relies on the assumption that, in
the proof assumed for a contradiction, the last applied rule is Rule CONS. In the
presence of Rule OLD this assumption no longer holds, requiring a new proof.

Remark 3. Kleymann considers adaptation-complete proof systems for partial
and total correctness of parallel programs in [14, 15]. In fact, the technical re-
port [14] contains a proof of the program in Theorem 5, directly contradicting the
theorem; however, the proof in [14] is invalid, neglecting crucial non-interference
conditions in the application of Rule PSV. It does not appear in [15].

7 Conclusion and Future work

We have shown that for while programs, recursive programs and disjoint parallel
programs, auxiliary variables are not needed and can be avoided using adaptation
rules. We presented concrete translations of proofs, which means that no new
method contracts and invariants need to be invented. The size of the produced
proofs is linear in terms of the original proofs. For parallel programs with shared
variables, auxiliary variables are essential. Table 1 summarizes the main results.

Class of programs Proof system with auxiliaries Proof system without auxiliaries

While PW + Rule OG PW
Recursion PR + Rule OG PR
Disjoint parallel PW + Rules PDJ, OG PW + Rules PDJ, ∃-IN
Parallel (shared var.) PW + Rules AT, PSV, OG auxiliaries needed

Table 1. Main results

It would be interesting to investigate the rôle of auxiliary variables for other
classes of programs. One such class is programs that combine disjoint parallelism
with recursion (cf. [17]). Of particular interest are object-oriented programs. A
technical challenge there is that a naive translation of proofs that use fields as
auxiliary variables introduces second-order quantification (over functions).

As Frank de Boer has experienced, separation logic [21] has emerged as the
prime formalism for program correctness. We invite Frank to join us in our effort
to extend our results to separation logic.

References

1. K. R. Apt. Recursive assertions and parallel programs. Acta Inf., 15:219–232,
1981.

2. K. R. Apt. Ten years of Hoare’s logic: A survey - part 1. ACM Trans. Program.
Lang. Syst., 3(4):431–483, 1981.

3. K. R. Apt, J. A. Bergstra, and L. G. L. T. Meertens. Recursive assertions are not
enough - or are they? Theor. Comput. Sci., 8:73–87, 1979.

4. K. R. Apt, F. S. de Boer, and E-R. Olderog. Verification of Sequential and Con-
current Programs. Texts in Computer Science. Springer, 2009.

5. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. Rus-
tan M. Leino, and E. Poll. An overview of JML tools and applications. STTT,
7(3):212–232, 2005.

6. E. M. Clarke. Proving correctness of coroutines without history variables. Acta
Inf., 13:169–188, 1980.

7. M. Clint. Program proving: Coroutines. Acta Inf., 2:50–63, 1973.

8. S. de Gouw, F. S. de Boer, W. Ahrendt, and R. Bubel. Weak arithmetic complete-
ness of object-oriented first-order assertion networks. In SOFSEM 2013: Theory
and Practice of Computer Science, 39th International Conference, Proceedings,
pages 207–219, 2013.

9. S. de Gouw, F. S. de Boer, and J. Rot. Proof pearl: The KeY to correct and stable
sorting. J. Autom. Reasoning, 53(2):129–139, 2014.

10. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

11. C. A. R. Hoare. Towards a theory of parallel programming. In Operating System
Techniques, pages 61–71. Academic Press, 1972.

12. M. Hofmann and M. Pavlova. Elimination of ghost variables in program logics.
In Trustworthy Global Computing, Third Symposium, TGC 2007, Revised Selected
Papers, pages 1–20, 2007.

13. J. H. Howard. Proving monitors. Commun. ACM, 19(5):273–279, 1976.
14. T. Kleymann. Hoare logic and auxiliary variables. Technical Report ECS-LFCS-

98-399, Laboratory for Foundations of Computer Science, University of Edinburgh,
1998.

15. T. Kleymann. Hoare logic and auxiliary variables. Formal Asp. Comput.,
11(5):541–566, 1999.

16. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977.

17. T. Nipkow. Hoare logics for recursive procedures and unbounded nondeterminism.
In Computer Science Logic, 16th International Workshop, CSL 2002, Proceedings,
pages 103–119, 2002.

18. E-R. Olderog. On the notion of expressiveness and the rule of adaption. Theor.
Comput. Sci., 24:337–347, 1983.

19. S. S. Owicki. Axiomatic Proof Techniques for Parallel Programs. Outstanding
Dissertations in the Computer Sciences. Garland Publishing, New York, 1975.

20. S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Inf., 6:319–340, 1976.

21. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th IEEE Symposium on Logic in Computer Science (LICS 2002), Proceedings,
pages 55–74, 2002.

