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Abstract. This paper introduces a coalgebraic foundation for coinduc-
tive types, interpreted as sets of values and extended with set theoretic
union. We give a sound and complete characterization of semantic sub-
typing in terms of inclusion of maximal traces. Further, we provide a
technique for reducing subtyping to inclusion between sets of finite traces,
based on approximation. We obtain inclusion of tree languages as a sound
and complete method to show semantic subtyping of recursive types with
basic types, product and union, interpreted coinductively.

1 Introduction

Basically all programming languages today support recursion to manipulate in-
ductively defined data structures such as linked lists and trees. Whereas induction
deals with finite but unbounded data, its dual, coinduction, deals with possibly
infinite data. The relevant distinction here concerns traditional algebraic data
structures which can be fully unfolded by a recursive program, and coalgebraic
data structures which can be manipulated while they unfold, even if this process
may never terminate. The interest in theoretical foundations for coinductive
types and reasoning techniques is rapidly growing. Practical applications of coin-
ductive types are found in the world of functional languages with lazy evaluation.
Moreover a coinductive interpretation of structural recursively defined types
with record, product and union type constructors allows one to assign types to
coinductive data, such as infinite and circular lists of objects in object-oriented
languages [3]. Union types allow a more precise analysis than disjoint sum [6], for
example to type constructs like if-then-else. Consider, for instance, the recursive
type definition below.

x1 7→ null∨ < elm: int, nxt: x1 > . (1)

Here null and int are primitive type constants for representing the empty list and
the integer values, respectively, and < elm: x, nxt: y > represents the (tagged)
product of the type variables x and y.
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Intuitively, the type defined by (1) is a recursive type representing all finite
and infinite linked lists of integer values. More formally, the type definition in
(1) can be interpreted both syntactically and semantically. Syntactically, (1) can
be interpreted as the set of finite and infinite closed terms over the alphabet
consisting of the constants null and int, obtained by unfolding. Semantically, the
set theoretic interpretation of the type definition (1) is based on a given semantic
interpretation of type constructors. The usual interpretation of null and int is
the set containing the empty list and the set of all integers, respectively. The
product type constructor then corresponds to the Cartesian product, and the
union type to set theoretic union. Recursion is interpreted by fixed points. Since
the interpretations of the union and product type constructors are monotonic
functions, by the Knaster-Tarski theorem we have that (1) admits both the
least and the greatest fixed point, that is, the equation can be interpreted either
inductively, or coinductively. The inductive interpretation yields the set of integer
linked lists of finite length. Notably, cyclic and other infinite lists are not captured.
In contrast, the coinductive interpretation consists of finite and infinite lists.

Moreover, the inductive interpretation of a type definition

x2 7→< elm: int, nxt: x2 > (2)

is the empty set. In a setting where cyclic lists can be built (e.g., in an object-
oriented program) it is unsound to give an inductive type as above to cyclic lists.
In fact, in the semantic subtyping approach an empty type cannot be inhabited
by any value, otherwise the system becomes unsound: any such value can have
an arbitrary type, by subsumption. In order to guarantee soundness either cyclic
values are banned, or cyclic values are allowed but have less precise types. For
instance, an acceptable inductive type for a cyclic list would be x1 from (1). This,
however, is not very precise, since accessing the n-th element of the list in a type
safe way would require n non-emptiness checks which are useless in the case of a
cyclic list.

The above argument shows that we have to consider a coinductive interpreta-
tion of recursive types (yielding, for example, for x2, the set of infinite lists), and
define subtyping semantically as set inclusion of coinductive interpretations. The
main challenge is to provide an equivalent syntactic interpretation of recursive
type declarations, and a corresponding sound and complete method for proving
subtyping. Note that such a syntactic representation cannot be inductive either,
because we are dealing with infinite terms. Existing coinductive proof methods
such as [3–5] are incomplete and involve complex soundness proofs.

The theory of coalgebras has emerged as a general framework for a transparent
and uniform study of coinduction (the basics are recalled in Section 2). Our aim
therefore is to develop a coalgebraic approach to coinductive types, providing a
single framework for the formalization of both canonical syntactic interpretations
and equivalent semantic interpretations.

To achieve this goal we first focus on the basic notion of coinductive types
without union (Section 3). This allows us to derive a natural syntactic interpre-
tation of coinductive types by final coalgebras with bisimulation as a sound and
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complete proof method for equivalence of coinductive types. Further, this basic
class of coinductive types allows us to focus on the general development of a
final coalgebra of values from which we derive, in our framework, a semantic
interpretation equivalent to the syntactic one.

The main challenge for a coalgebraic formalization of union types is to capture
the distributivity of the union constructor over the product type constructor.
In the setting of coalgebras this problem is reflected in the difference between
bisimilarity and trace semantics. Our solution uses a coalgebraic approach to
trace semantics based on [21, 18, 10], to extend the case of types without union
to a precise characterization of semantic subtyping as inclusion between subsets
of the final coalgebra, thus incorporating union types (Section 4).

Finally, we show how to reduce subtyping to inclusion between sets of finite
traces, based on approximation of maximal traces by finite ones (Section 5). Such
a reduction does not hold for arbitrary types of systems, but we devise a general
coinductive proof technique for showing that it does apply in mildly restricted
settings. This technique is instantiated to Moore automata and tree automata,
yielding sound and complete methods for proving subtyping.

The contributions of this paper are as follows. We provide a structural and
natural coalgebraic semantics for semantic subtyping of coinductive union types,
which is parametric in the type constructors and abstracts away from a specific
choice of syntax. We extend the theory of coalgebraic trace semantics with a
novel coinductive method for finitely approximating maximal traces. We apply
this technique to give the first sound and complete method for deciding semantic
subtyping of coinductively interpreted recursive types with product and union.

2 Coalgebras

For an extensive introduction to the theory of universal coalgebra see [23]. We
denote by Set the category of sets and functions and by Id the identity functor.
Given a functor F : Set→ Set, an F -coalgebra is a pair (X, c) of a set X and a
function c : X → FX. A homomorphism between two coalgebras (X, c) and (Y, d)
is a function h : X → Y such that d ◦h = Fh ◦ c. An F -bisimulation between two
F -coalgebras (X, c) and (Y, d) is a relation R ⊆ X×Y that can be equipped with
an F -coalgebra structure γ turning both projections πl : R→ X and πr : R→ Y
into coalgebra homomorphisms. Two elements x ∈ X and y ∈ Y are F -bisimilar,
denoted by x ∼F y, if there exists a bisimulation R containing the pair (x, y). If
F is clear from the context we write ∼ instead of ∼F .

Example 2.1. Let A be a set. For the functor A× Id, a coalgebra consists of a
set X and a function 〈o, δ〉 : X → A×X. Here 〈o, δ〉 denotes the pairing of the
output function o : X → A and the next state function δ : X → X. Given sets
A and B, coalgebras for the functor LX = B + (A×X) are representations of
infinite lists over A and finite lists over A with termination in B.

A (single-sorted) signature Σ = (Σn)n∈N can be represented by a polynomial
Set functor defined by HΣ(X) =

∐
n∈NΣn ×Xn. A Σ-coalgebra over the set of
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variables X is given by a function assigning each x ∈ X to a term σ(x1, . . . , xn),
where σ ∈ Σn is an operator of arity n ≥ 0, and xi ∈ X for all 1 ≤ i ≤ n.

For a given functor F , the final coalgebra (Ω, ξF ) (if it exists) is a canonical
domain of behaviour of F -coalgebras, with the property that for any F -coalgebra
(X, c) there exists a unique homomorphism h : X → Ω into it [23]. Final coalgebras
exist under mild conditions on the functor.

Example 2.2. The carrier of the final coalgebra for the functor A× Id consists of
the set of all infinite lists over A. For LX = B + (A ×X), the final coalgebra
consists of all finite lists in A∗B and infinite lists in Aω. It is thus given by the
set A?B∪Aω with coalgebra map ζ : A?B∪Aω → B+ (A× (A?B∪Aω)) defined
by ζ(b) = b and ζ(aw) = 〈a,w〉 for all a ∈ A, b ∈ B and w ∈ A?B ∪ Aω. The
final coalgebra of a signature functor HΣ is given by ω : T∞Σ → Σ(T∞Σ ) where
T∞Σ is the set of all finite and infinite Σ-trees (see, for instance, [1]).

One of the central elements of the theory of coalgebras is the (proof) principle
of coinduction, which says that bisimilar states are mapped to the same element
of the final coalgebra: if x ∼ y then h(x) = h(y). Establishing bisimulations
is a concrete proof method for bisimilarity, and thus, by the above principle,
for equality in the final coalgebra. If the functor preserves weak pullbacks, a
rather mild condition satisfied by all of the above examples, the converse holds as
well [23], i.e., h(x) = h(y) implies x ∼ y. In the following sections we implicitly
assume all functors to preserve weak pullbacks.

3 A Semantic Approach to Coinductive Types

In this section we propose a framework for coinductive types without union. We
use two functors F and G as follows: F -coalgebras are interpreted as (recursive)
type definitions, whereas G-coalgebras are (recursive) value definitions. We assume
that the final coalgebras of F and G exist. The carrier T of the final F -coalgebra
(T, ξF ) consists of all coinductive types. The carrier V of the final G-coalgebra
(V, ξG) is the set of all coinductive values.

Example 3.1. A type definition such as x 7→< elm: int, nxt: y > together with
y 7→< elm: bool, nxt: x >, can be given as a coalgebra for {int, bool} × Id. The
homomorphism into the final coalgebra maps x to int, bool, int, bool, . . . ∈ T.

An infinite recursive definition pi 7→ (i, qi) and qi 7→ (true, pi+1) for i ∈ N can
be represented as a coalgebra for the functor (N+B)× Id, where B = {true, false}
is the set of Boolean values, and N is the set of non-negative integers. Then p0 is
mapped to the infinite list 0, true, 1, true, 2, . . . ∈ V in the final coalgebra.

The functors F and G will be connected by a natural transformation. A natural
transformation α : G⇒ F associates to every set X a function αX : GX → FX
such that for any function f : X → Y we have Ff ◦ αX = αY ◦ Gf . In order
to assign types to values we assume given a natural transformation α : G⇒ F ,
which represents an assignment of types to basic values. We will exhibit an
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example below, but first we set up the general framework, which coinductively
assigns types to values. More precisely, by applying the natural transformation α
to the final G-coalgebra, we turn it into an F -coalgebra and thus obtain a unique
F -coalgebra homomorphism from coinductive values to coinductive types. This
is depicted in the middle of the diagram below.

V
ν //

d
��

V

��

τ // T

��

X
ρoo

c

��

GV
Gν //

αV

��

GV

αV

��
FV

Fν // FV Fτ // FT FX
Fρoo

(3)
The map τ defined by fi-

nality gives the assignment of
types to values. The left and
the right side of the diagram
are representations:
– Given a value representation
d : V → GV we let ν : V → V
be the unique coalgebra homo-
morphism and extend d, again
using α, to a F -coalgebra. This is depicted in the two commuting squares on the
left side of the diagram.
– Given a type representation c : X → FX we let ρ : X → T be the unique
homomorphism into T, as depicted on the right side of the diagram. A typing
relation between V and X is then defined in the obvious way: given p ∈ V and
x ∈ X we let p : x iff τ(ν(p)) = ρ(x).

Example 3.2. Continuing the above Example 3.1, we can define α : ((N + B)×
Id)⇒ ({int, bool}× Id) for every set S simply by putting αS((n, s)) = (int, s) and
αS((b, s)) = (bool, s) for all n ∈ N, b ∈ B, and s ∈ S. For the concrete type and
value definitions x and p0 respectively, of Example 3.1, it is easy to check that
τ(ν(p0)) = ρ(x), so p0 : x as expected. In fact, as we will see below, this can be
checked by establishing a bisimulation.

In the above approach the meaning of a type declaration c : X → FX is
given by finality, in terms of the unique homomorphism ρ : X → T. It is thus
independent of the language of values. Next we interpret types semantically, as
sets of values, and subsequently we relate the two interpretations.

Definition 3.1. Types are interpreted as sets of values by J−K : T → P(V),
defined as the inverse of τ , i.e., JtK = {v ∈ V | τ(v) = t} for any t ∈ T.

It follows from the above definition that if Jt1K = Jt2K and both Jt1K and Jt2K
are non-empty, then t1 = t2. Types are inhabited by values (thus non-empty) if
the natural transformation α : G⇒ F mapping values to types is surjective in
all of its components, i.e., αX is surjective for any set X.

Lemma 3.1. If α is a surjective natural transformation then τ is surjective.

Corollary 3.1. If α is a surjective natural transformation then t1 = t2 if and
only if Jt1K = Jt2K for all t1, t2 ∈ T.

Note that if Jt1K ⊆ Jt2K then Jt1K = Jt2K. Subtyping will become relevant in the
next section, where we consider subsets of T.
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To see why surjectivity is a natural condition, consider the type definitions x
and y from Example 3.1, and α : (N× Id)⇒ ({int, bool}× Id) given by αS(n, s) =
(int, s). In this case clearly ρ(x) 6= ρ(y), whereas Jρ(x)K = ∅ = Jρ(y)K.

Equality of types coincides with bisimilarity, by coinduction: T is a final
coalgebra. Thus we obtain the following soundness and completeness result.

Theorem 3.1. Using the setting of (3), let c : X → FX be a coalgebra, and α
surjective. For all x, y ∈ X we have Jρ(x)K = Jρ(y)K iff ρ(x) = ρ(y) iff x ∼F y.

If F is a polynomial functor (constructed by finite sum and product) and we
restrict to type declarations using only finitely many variables (so that types
essentially represent rational trees over a signature) then bisimulation is not only
a sound and complete proof method for type equality, but it is also decidable [7].
We note that in the above framework, computing the typing relation can be seen
as a special case of type equality (by turning G-coalgebras into F -coalgebras),
and therefore it can also be computed using bisimulations.

4 Coinductive Union Types

In the previous section we have introduced a coalgebraic semantics, where types,
i.e., elements of the final coalgebra T, are equal if and only if they represent
the same sets of values. Types and values can be represented by coalgebras,
and bisimulation provides a concrete proof principle for type equivalence. In the
current section we are interested in extending these results to union types, that
is, subsets of T. By P(X) we denote the power set functor applied to a set X, i.e.,
the set of subsets of X; for a function f : X → P(Y ) we write f ] : P(X)→ P(Y )
for its direct image. In the previous section we have coinductively constructed
a map τ : V → T from values to types, from which the semantics JtK of a type
t ∈ T as a set of values can be defined simply by using the inverse. In order
to have a natural counterpart of Theorem 3.1 in the setting of subtyping we
extend the semantics to sets of types using direct image J−K] : P(T) → P(V),
i.e., JSK] = {v ∈ V | τ(v) ∈ S}.

Theorem 4.1. If α is a surjective natural transformation then T1 ⊆ T2 if and
only if JT1K] ⊆ JT2K], for all T1, T2 ⊆ T.

One of the main problems is to represent elements of P(T) as coalgebras. In
the previous section we have seen how an F -coalgebra represents a type definition;
it is natural to consider a PF -coalgebra instead, in the case of union types, adding
a top-level union constructor. The problem here is that the branching of PF -
coalgebras should not be considered. Indeed, P(T) is not the final coalgebra of
PF—in fact, PF does not even have a final coalgebra for cardinality reasons.
But even if we restrict ourselves to PfF (where Pf (X) is the set of finite subsets
of X), then the final coalgebra consists of finitely branching synchronization trees
labelled in a and quotiented by strong bisimilarity. Instead, we need the trace
semantics of PF -coalgebras. To this end we base ourselves on the coalgebraic
trace semantics of [21].
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Definition 4.1. Let c : X → P(FX) be a coalgebra, and (T, ξT) the final F -
coalgebra. A trace map tr is a map that makes the following diagram commute:

X

c

��

tr // P(T)

P(ξT)

��
P(FX)

(F̄ tr)] // P(FT)

where F̄ (tr) is defined by relation lifting [21]. If the diagram does not commute
but P(ξT) ◦ tr ⊆ (F̄ tr)] ◦ c, then we say tr is a quasi trace map.

Instead of recalling the definition of relation lifting, we introduce it by examples.

Example 4.1. Consider the functor FX = B+(A×X). Then T = A∗B∪Aω (see
Example 2.2). A coalgebra c : X → PFX is a nondeterministic Moore automaton.
A trace map is a map tr : X → P(A∗B ∪Aω) such that for all b ∈ B: b ∈ tr(x)
iff b ∈ c(x), and for all aw ∈ A(A∗B ∪ Aω): aw ∈ tr(x) iff (a, y) ∈ c(x) and
w ∈ tr(y) for some y ∈ X. For a quasi trace map, these equivalences are relaxed
to implications from left to right.

Given any signature functor HΣ (Example 2.1), a PHΣ-coalgebra is a nonde-
terministic top-down tree automaton. The trace map associated with a coalgebra
c : X → P(HΣX) satisfies the following: σ ∈ tr(x) iff σ ∈ Σ0 ∩ c(x), and
σ(k1, . . . , kn) ∈ tr(x) iff 〈σ, x1, . . . , xn〉 ∈ Σn × Xn ∩ c(x) and ki ∈ tr(xi) for
1 ≤ i ≤ n. Again, for a quasi trace map these are implications from left to right.

The set of maps of type X → P(T) forms a complete lattice, by pointwise
extension of the subset inclusion order on P(T). A trace map can be viewed as
a fixpoint of a map on this complete lattice; since relation lifting is monotone,
this is a monotone map, and therefore, by the Knaster-Tarski theorem, for a
fixed PF -coalgebra the greatest trace map as well as the least trace map exist (a
similar approach is taken in [10]). To model coinductive types we are interested in
this greatest trace map (in the sequel typically denoted by T and called maximal
traces). Moreover, we get the following proof principle: if tr is a quasi trace map,
then it is a post-fixed point of the above monotone map, so it is (pointwise)
included in the greatest one: tr ⊆ T . This proof technique is applied in Section 5.

Example 4.2. Continuing Example 4.1, the least trace map t for a non-deterministic
Moore automaton assigns to a state the standard definition of its finite traces in
A∗B. The greatest trace map T assigns to a state the finite traces as well as the
infinite traces in Aω. For example, recall the type definition x1 from equation (1)
of the introduction, representing finite and infinite lists of integers, and x2 from
equation (2) representing infinite lists of integers. They clearly define Moore
automata. For the least trace map t we have t(x1) = int∗null and t(x2) = ∅. For
the greatest trace map T we have T (x1) = t(x1)∪ intω and T (x2) = intω (i.e. the
desired coinductive types of definitions x1 and x2).

For a non-deterministic (top-down) tree automaton, the least trace map is
simply the standard semantics of tree automata, assigning a tree language (of
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finite trees) to each state. The greatest trace map contains this language as well as
all infinite trees such that, when parsed, the automaton does not block. These tree
automata can be used to represent type definitions, similarly to Moore automata,
but generalizing this to arbitrary (finite) use of the product constructor.

Corollary 4.1. For any coalgebra c : X → P(FX) and any x, y ∈ X we have
T (x) ⊆ T (y) iff JT (x)K] ⊆ JT (y)K] (given that α is surjective).

Thus, subset inclusion between syntactic unfoldings of sets of types is sound
and complete with respect to semantic subtyping, i.e., inclusion between types
interpreted as sets of values. Unfortunately, since P(T) is not a final coalgebra,
we do not obtain bisimilarity (or similarity) as a proof principle, as was the case
in the framework of Section 3. We address the problem of proving subtyping in
the following section.

5 Approximating Coinductive Union Types

By the main results of the previous section, semantic subtyping coincides with
subtyping between sets of maximal traces, that is, syntactic unfoldings of type
definitions. In this section we provide a generally applicable technique to reduce
subtyping to inclusion between finite traces. This is based on finite approximation
of maximal traces, which we introduce below.

We fix a functor F : Set→ Set (preserving weak pullbacks) and a coalgebra
c : X → PFX. In order to define approximation, consider the functor F⊥ = F +
{⊥}, and the natural transformation γ : PF ⇒ PF⊥ given by γX(S) = S ∪ {⊥}.
We can now turn c into the F⊥-coalgebra γX ◦ c. It is our aim to use the finite
traces of γX ◦ c to approximate the maximal traces of c. We use the approach
of [18] to finite trace semantics via finality in the category Rel, where objects are
sets and morphisms are relations (represented as functions X → P(Y )).

X

c

��

t⊥ // P(I)

��

P(FX)

γX

��
P(F⊥X)

(F̄⊥t⊥)]// P(F⊥I)

(4)
Central to this approach is the initial alge-

bra of F⊥, which we denote by ι : F⊥I→ I. By
Lambek’s lemma ι is an isomorphism. Now,
by [18, Theorem 3.8], I is the final coalgebra
in Rel, for the functor F̄⊥ defined by relation
lifting. Thus, for any F⊥-coalgebra in Rel, that
is, a PF⊥-coalgebra in Set, we obtain a unique
map into P(I). Applying this to a coalgebra
γX ◦ c : X → PF⊥X as constructed above, we
get a unique map t⊥ : X → P(I) as in (4).

Example 5.1. For a non-deterministic Moore automaton c : X → P(B+(A×X)),
the above construction yields the finite trace semantics for γX ◦ c, which is the
Moore automaton obtained by adding the output ⊥ to each state. We regard
a word w⊥ as a prefix of a word v ∈ A∗B ∪ Aω if wv′ = v for some v′; in this
sense, t⊥(x) is prefix-closed.
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Applying the above construction to T, we get a map approx : T → P(I). This
map, informally, computes the approximations of maximal traces. Consider now
the following map defined from it: maxtr : P(I)→ P(T), given by maxtr(S) =
{w ∈ T | approx (w) ⊆ S}. The map maxtr computes the set of maximal traces
represented by a set of approximations. The following lemma states that the
function t⊥ can be represented as the approximation of maximal traces.

Lemma 5.1. t⊥ = approx ] ◦ T .

This follows from the fact that I is final in Rel. As a simple consequence of this
result and the fact that maxtr is defined as the (upper) inverse of approx , we
now obtain the following:

Corollary 5.1. T ⊆ maxtr ◦ t⊥.

The converse of the above corollary does not hold in general. There is a standard
counterexample (e.g., [17]): take a non-deterministic Moore automaton containing
a state x that accepts all finite traces of the form anb (for some b and all n ≥ 0),
but not the infinite trace aω = aaa . . . (such an automaton can be realized using
infinite branching). Then maxtr ◦ t⊥(x) contains aω, whereas T (x) does not.

To prove the converse for restricted classes of coalgebras, we use that T is a
greatest fixpoint. Under the condition that maxtr ◦ t⊥ is a quasi trace map, we
obtain the soundness and completeness of finite traces w.r.t. (semantic) subtyping.

Theorem 5.1. Let c : X → P(FX) be a coalgebra such that maxtr ◦t⊥ is a quasi
trace map. Then for any x, y ∈ X: t⊥(x) ⊆ t⊥(y) iff T (x) ⊆ T (y).

Proof. Suppose t⊥(x) ⊆ t⊥(y). If maxtr ◦t⊥ is a quasi trace map then maxtr ◦t⊥ ⊆
T ; combined with Corollary 5.1, this yields maxtr ◦ t⊥ = T . Conversely, if
T (x) ⊆ T (y) then approx ]◦T (x) ⊆ approx ]◦T (y), so t⊥(x) ⊆ t⊥(y) by Lemma 5.1.

Moore automata. As shown in Example 4.1, non-deterministic Moore automata
can be used to represent types for finite and infinite lists. However, in general
they do not satisfy the condition of Theorem 5.1; we need to make an appropriate
restriction on the branching behaviour. We say c : X → P(B + (A × X)) is
image-finite when for any x ∈ X and any a ∈ A: c(x) may contain finitely many
elements of the form (a, x) (but infinitely many of B, and A may itself be infinite).

Proposition 5.1. For any image-finite Moore automaton: t⊥(x) ⊆ t⊥(y) iff
T (x) ⊆ T (y).

Proof. Let c be image-finite. Using Example 4.1, we see that to prove that
maxtr ◦ t⊥ is a trace map, is to prove that 1) b ∈ maxtr ◦ t⊥(x) implies b ∈ c(x),
and 2) for all aw ∈ A(A∗B∪Aω): if aw ∈ maxtr ◦t⊥(x) then (a, y) ∈ c(x) and w ∈
maxtr ◦ t⊥(y) for some y ∈ X. The first part 1) is easy: b ∈ maxtr ◦ t⊥(x) implies
b ∈ t⊥(x), which in turn implies b ∈ c(x). For 2), suppose aw ∈ maxtr ◦ t⊥(x).
Then w ∈

⋃
(a,y)∈c(x) maxtr ◦ t⊥(y); by image-finiteness, this is a finite union.

The case that w is finite is straightforward; suppose w is infinite. Then approx (w)
is infinite; and thus there is some y for which infinitely many prefixes of w are
contained in t⊥(y). But t⊥(y) is prefix-closed; so w ∈ maxtr ◦ t⊥(y).
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Example 5.2. Consider the following type definition.

x3 7→ < elm: int, nxt: x4 >
x4 7→ null∨ < elm: int, nxt: x4 > ∨ < elm: bool, nxt: x4 > .

(5)

In the coinductive interpretation this represents all finite and infinite lists of
integers and booleans that start with an integer. Consider the types below:

x5 7→ < elm: int, nxt: x6 > ∨ < elm: int, nxt: x7 > ∨ < elm: int, nxt: x8 >
x6 7→ < elm: bool, nxt: x8 > ∨ < elm: bool, nxt: x6 > ∨ < elm: int, nxt: x6 >
x7 7→ < elm: int, nxt: x8 > ∨ < elm: bool, nxt: x7 > ∨ < elm: int, nxt: x7 >
x8 7→ null .

(6)
Here x6 and x7 represent infinite lists, as well as finite lists ending with bool
and int, respectively. We can now prove that T (x3) ⊆ T (x5) by reducing it to
t⊥(x3) ⊆ t⊥(x5), which is a simple case of language inclusion.

Tree automata. A tree automaton c : X → P+(HΣX) is said to be image finite if
for all x ∈ X and σ ∈ Σ⊥ there are only finitely many tuples 〈σ, x1, . . . xn〉 ∈ c(x),
where n is the arity of σ.

Proposition 5.2. For any image-finite tree automaton: t⊥(x) ⊆ t⊥(y) iff T (x) ⊆
T (y).

The proof is a straightforward extension of the case of Moore automata. Thus, we
obtain inclusion of tree languages (of finite trees) as a sound and complete method
to show semantic subtyping of recursive types with product and union, interpreted
coinductively. For regular tree languages, i.e., languages accepted by a top-down
non-deterministic tree automaton with finitely many states, language inclusion
(and thus subtyping) is decidable, although it is EXPTIME-complete [11].

6 Related Work

Axiomatizations and algorithms for subtyping on recursive types interpreted
coinductively have been proposed by Amadio and Cardelli [2] in the context
of functional programming; subsequently, a more concise sound and complete
axiomatization has been proposed by Brandt and Henglein [9], with a novel rule
for a finitary coinduction principle. In these papers types are interpreted as ideals
in a universal domain, hence they do not follow the semantic subtyping approach
where subtyping corresponds to the subset relation. Furthermore, types have
no Boolean operators; as we will see, introducing union types makes sound and
complete axiomatization of subtyping more challenging.

Damm [12] proves decidability of subtyping between recursive types with
intersection, union, and function types, by reduction to the problem of inclusion
between regular tree expressions. However, the paper does not consider record
types, and, more importantly, types are interpreted inductively, rather than
coinductively, over a rather complex metric space of ideals. As a consequence,
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the corresponding subtyping relation is not comparable with ours. Di Cosmo et
al. [13] study subtyping of recursive types up to associativity and commutativity
of products; their definition of subtyping is fully axiomatic, and only products
and arrow types are considered, no Boolean operators. A nice introduction to
the fundamental theory of recursive types and subtyping can be found in the
work by Gapeyev et al. [16]; the survey does not consider Boolean operators, and
subtyping is defined axiomatically, hence a type interpretation is not introduced.

Semantic subtyping in the presence of Boolean operators and product or
record type constructors has been intensively studied in the context of the
XDuce [20] and CDuce [6] programming languages. As in our case, the subtyping
relation corresponds to a natural semantic notion: types denote sets of documents
(that is, sets of finite trees), and subtyping coincides with inclusion between
the sets denoted by two types. The main difference with coinductive types is
their interpretation: types in both XDuce and CDuce are interpreted inductively,
therefore a type definition as (2) corresponds to the empty set of values; as a
matter of fact, types in XDuce and CDuce fail to capture cyclic values. Even
though CDuce supports references, and, hence, it is possible to create cycles, the
types that can be correctly assigned to cyclic values are “inductive”.

Semantic subtyping with union and coinductive types has been studied in
the context of precise static type analysis for object-oriented programming [3].
Sound but not complete axiomatizations of subtyping have been defined in [4, 5].

7 Future Work

The coalgebraic framework presented in this paper provides the basis for an
extensive, structured investigation of subtyping for coinductive union types.

The subtyping relation could be refined by allowing subtyping between prim-
itive types (e.g., nat is a subtype of int) as well as depth and width subtyping
between records. Technically, this could be achieved by moving our framework
from the category Set to the category of partially ordered sets.

The methods in [14, 8] allow to canonically derive sound and complete axiom-
atizations for the rational subset of the final coalgebra of a polynomial functor.
For example, one can easily obtain a calculus for subtyping, by combining the
axiomatisation of tree regular expressions of [14] with the approximation results
of Section 5 of the present paper.

In our framework we abstracted from concrete calculi of expressions evaluating
to values. It would be interesting to integrate the bialgebraic approach [22]
(defining syntax and semantics of expressions) within our framework by allowing
the specification of typing rules for each operator.
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