
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

OpenJDK’s java.utils.Collection.sort() is broken:
The good, the bad and the worst case?

Stijn de Gouw1,2, Jurriaan Rot3,1, Frank S. de Boer1,3,
Richard Bubel4, and Reiner Hähnle4

1 CWI, Amsterdam, The Netherlands
2 SDL, Amsterdam, The Netherlands
3 Leiden University, The Netherlands

4 Technische Universität Darmstadt, Germany

Abstract. We investigate the correctness of TimSort, which is the main
sorting algorithm provided by the Java standard library. The goal is
functional verification with mechanical proofs. During our verification
attempt we discovered a bug which causes the implementation to crash.
We characterize the conditions under which the bug occurs, and from this
we derive a bug-free version that does not compromise the performance.
We formally specify the new version and mechanically verify the absence
of this bug with KeY, a state-of-the-art verification tool for Java.

1 Introduction

Some of the arguments often invoked against the usage of formal software veri-
fication include the following: it is expensive, it is not worthwhile (compared to
its cost), it is less effective than bug finding (e.g., by testing, static analysis, or
model checking), it does not work for “real” software. In this article we evaluate
these arguments in terms of a case study in formal verification.

The goal of this paper is functional verification of sorting algorithms written
in Java with mechanical proofs. Because of the complexity of the code under
verification, it is essential to break down the problem into subtasks of manage-
able size. This is achieved with contract-based deductive verification [3], where
the functionality and the side effects of each method are precisely specified with
expressive first-order contracts. In addition, each class is equipped with an in-
variant that has to be re-established by each method upon termination. These
formal specifications are expressed in the Java Modeling Language (JML) [11].

We use the state-of-art Java verification tool KeY [4], a semi-automatic, in-
teractive theorem prover, which covers nearly full sequential Java. KeY typically
finds more than 99% of the proof steps automatically (see Sect. 6), while the re-
maining ones are interactively done by a human expert. This is facilitated by the
use in KeY of symbolic execution plus invariant reasoning as its proof paradigm.
That results in a close correspondence between proof nodes and symbolic pro-
gram states which brings the experience of program verification somewhat close
to that of debugging.

?
Partly funded by the EU project FP7-610582 Envisage and the NWO project 612.063.920 CoRE.

The work presented here was motivated by our recent success to verify
executable Java versions of counting sort and radix sort in KeY with man-
ageable effort [6]. As a further challenge we planned to verify a complicated
sorting algorithm taken from the widely used OpenJDK core library. It turns
out that the default implementation of Java’s java.util.Arrays.sort() and
java.util.Collection.sort() method is an ideal candidate: it is based on a
complex combination of merge sort and insertion sort [12, 15]. It had a bug his-
tory5, but was reported as fixed as of Java version 8. We decided to verify the
implementation, stripped of generics, but otherwise completely unchanged and
fully executable. The implementation is described in Sect. 2.

During our verification attempt we discovered that the fix to the bug men-
tioned above is in fact not working. We succeeded to characterize the conditions
under which the bug occurs and results in a crash (Sect. 4) and from this we could
derive a bug-free version (Sect. 5) that does not compromise the performance.

We provide a detailed experience report (Sect. 6) on the formal specification
and mechanical verification of correctness and termination of the fixed version
with KeY (Sects. 5, 6). Summarizing, our real-life case study shows that formal
specification and verification, at least of library code, pays off, but also shows
the limitations of current verification technology. In Sect. 7 we draw conclusions.

Related work. Several industrial case studies have already been carried out
in KeY [13, 14, 1]. The implementation considered here and its proof is the most
complex and one of the largest so far. The first correctness proof of a sort-
ing algorithm is due to Foley and Hoare, who formally verified Quicksort by
hand [9]. Since then, the development and application of (semi)-automated the-
orem provers has become standard in verification. The major sorting algorithms
Insertion sort, Heapsort and Quicksort were proven correct by Filliâtre and Ma-
gaud [8] using Coq, and Sternagel [16] formalized a proof of Mergesort within
the interactive theorem prover Isabelle/HOL.

Acknowledgment. We thank Peter Wong for suggesting to verify TimSort.

2 Implementation of TimSort

The default implementation of java.util.Arrays.sort for non-primitive types
is TimSort, a hybrid sorting algorithm based on mergesort and insertion sort.
The algorithm reorders a specified segment of the input array incrementally from
left to right by finding consecutive (disjoint) sorted segments. If these segments
are not large enough, they are extended using insertion sort. The starting posi-
tions and the lengths of the generated segments are stored on a stack. During
execution some of these segments are merged according to a condition on the
top elements of the stack, ensuring that the lengths of the generated segments
are decreasing and the length of each generated segment is greater than the sum
of the next two. In the end, all segments are merged, yielding a sorted array.

We explain the algorithm in detail based on the important parts of the Java
implementation. The stack of runs (a sorted segment is called here a “run”) is

5 http://bugs.java.com/view_bug.do?bug_id=8011944

encapsulated by the object variable ts. The stack of starting positions and run
lengths is represented by the arrays of integers runBase and runLen, respectively.
The length of this stack is denoted by the instance variable stackSize. The main
loop is as follows (with original comments):

Listing 1. Main loop of TimSort

1 do {
2 // Identify next run
3 int runLen = countRunAndMakeAscending(a, lo, hi, c);
4 // If run is short, extend to min(minRun, nRemaining)
5 if (runLen < minRun) {
6 int force = nRemaining <= minRun ? nRemaining : minRun;
7 binarySort(a, lo, lo + force, lo + runLen, c);
8 runLen = force;
9 }

10 // Push run onto pending−run stack, and maybe merge
11 ts.pushRun(lo, runLen);
12 ts.mergeCollapse();
13 // Advance to find next run
14 lo += runLen;
15 nRemaining −= runLen;
16 } while (nRemaining != 0);
17 // Merge all remaining runs to complete sort
18 assert lo == hi;
19 ts.mergeForceCollapse();
20 assert ts.stackSize == 1;

In each iteration of the above loop, the next run is constructed. First, a maximal
ordered segment from the current position lo is constructed (the parameter hi

denotes the upper bound of the entire segment of the array a to be sorted).
This construction consists in constructing a maximal descending or ascending
segment and reversing the order in case of a descending one. If the constructed
run is too short (that is, less than minRun) then it is extended to a run of length
minRun using binary insertion sort (nRemaining is the number of elements yet
to be processed). Next, the starting position and the length of the run is pushed
onto the stack of the object variable ts by the method pushRun below.

Listing 2. pushRun

1 private void pushRun(int runBase, int runLen) {
2 this.runBase[stackSize] = runBase;
3 this.runLen[stackSize] = runLen;
4 stackSize++; }

The method mergeCollapse subsequently checks whether the invariant (lines
5—6 of Listing 3) on the stack of runs still holds, and merges runs until the
invariant is restored (explained in detail below). When the main loop terminates,
the method mergeForceCollapse completes sorting by merging all stacked runs.

Listing 3. mergeCollapse

1 /∗∗
2 ∗ Examines the stack of runs waiting to be merged and merges
3 ∗ adjacent runs until the stack invariants are reestablished:
4 ∗ 1. runLen[i − 3] > runLen[i − 2] + runLen[i − 1]
5 ∗ 2. runLen[i − 2] > runLen[i − 1]
6 ∗ This method is called each time a new run is pushed onto the stack,
7 ∗ so the invariants are guaranteed to hold for i < stackSize upon
8 ∗ entry to the method.

9 ∗/
10 private void mergeCollapse() {
11 while (stackSize > 1) {
12 int n = stackSize − 2;
13 if (n > 0 && runLen[n−1] <= runLen[n] + runLen[n+1]) {
14 if (runLen[n − 1] < runLen[n + 1])
15 n−−;
16 mergeAt(n);
17 } else if (runLen[n] <= runLen[n + 1]) {
18 mergeAt(n);
19 } else {
20 break; // Invariant is established
21 }
22 }
23 }

The method mergeCollapse ensures that the top three elements of the stack sat-
isfy the invariant given in the comments above. In more detail, let runLen[n-1] =
C, runlen[n] = D, and runLen[n+1] = E be the top three elements. Opera-
tionally, the loop is based on the following cases: 1. If C ≤ D + E and C < E
then the runs at n-1 and n are merged. 2. If C ≤ D + E and C ≥ E then the
runs at n and n+1 are merged. 3. If C > D + E and D ≤ E then the runs at n

and n+1 are merged. 4. If C > D + E and D > E then the loop exits.

3 Breaking the Invariant

We next show that the method mergeCollapse does not preserve the invariant
in the entire run stack, contrary to what is suggested in the comments. To see
this, consider as an example the situation where runLen consists of 120, 80, 25,
20, 30 on entry of mergeCollapse, directly after 30 has been added by pushRun.
In the first iteration of the mergeCollapse loop there will be a merge at 25, since
25 ≤ 20 + 30 and 25 < 30, resulting in (Listing 3, lines 15 and 16): 120×, 80,
45, 30. In the second iteration, it is checked that the invariant is satisfied at 80
and 45 (lines 13 and 17), which is the case since 80 > 45 + 30 and 45 > 30, and
mergeCollapse terminates. But notice that the invariant does not hold at 120,
since 120 ≤ 80 + 45. Thus, mergeCollapse has not fully restored the invariant.

More generally, an error (violation of the invariant) can only be introduced
by merging the second-to-last element and requires precisely four elements after
the position of the error, i.e., at runLen[stackSize-5]. Indeed, suppose runLen
consists of four elements A,B,C,D satisfying the invariant (so A > B + C,
B > C + D and C > D). We add a fifth element E to runLen using pushRun,
after which mergeCollapse is called. The only possible situation in which an
error can be introduced, is when C ≤ D + E and C < E. In this case, C and D
will be merged, yielding the stack A,B,C + D,E. Then mergeCollapse checks
whether the invariant is satisfied by the new three top elements. But A is not
among those, so it is not checked whether A > B + C + D. As shown by the
above example, this latter inequality does not hold in general.

3.1 The Length of runLen

The invariant affects the maximal size of the stack of run lengths during exection;
recall that this stack is implemented by runLen and stackSize. The length of
runLen is declared in the constructor of TimSort, based on the length of the input
array a and, as shown below, on the assumption that the invariant holds. For
performance reasons it is crucial to choose runLen.length as small as possible
(but so that stackSize does not exceed it). The original Java implementation
is as follows6 (in a recent update the number 19 was changed to 24, see Sect. 4):

Listing 4. Bound of runLen based on length of the input array

1 int len = a.length;
2 int stackLen = (len < 120 ? 5 :
3 len < 1542 ? 10 :
4 len < 119151 ? 19 : 40);

We next explain these numbers, assuming the invariant to hold. Consider the
sequence (bi)i≥0, defined inductively by b0 = 0, b1 = 16 and bi+2 = bi+1 + bi + 1.
The number 16 is a general lower bound on the run lengths. Now b0, . . . , bn are
lower bounds on the run lengths in an array runLen of length n that satisfy the
invariant; more precisely, bi−1 ≤ runLen[n-i] for all i with 0 < i ≤ n.

Let runLen be a run length array arising during execution, assume it satisfies
the invariant, and let n = stackSize. We claim that for any number B such
that 1 +

∑B
i=0 bi > a.length we have n ≤ B throughout execution. This means

that B is a safe bound, since the number of stack entries never exceeds B.
The crucial property of the sequence (bi) is that throughout execution we

have
∑n−1

i=0 bi <
∑n−1

i=0 runLen[i] using that b0 = 0 < runLen[n-1] and bi−1 ≤
runLen[n-i]. Moreover, we have

∑n−1
i=0 runLen[i] ≤ a.length since the runs

in runLen are disjoint segments of a. Now for any B chosen as above, we have∑n−1
i=0 bi <

∑n−1
i=0 runLen[i] ≤ a.length < 1+

∑B
i=0 bi and thus n ≤ B. Hence,

we can safely take runLen.length to be the least B such that 1 +
∑B

i=0 bi >
a.length. If a.length < 120 we thus have 4 as the minimal choice of the bound,
for a.length < 1542 it is 9, etc. This shows that the bounds used in OpenJDK
(Listing 4) are slightly suboptimal (off by 1). The default value 40 (39 is safe) is
based on the maximum 231 − 1 of integers in Java.

4 Worst Case Stack Size

In Sect. 3 we showed that the declared length of runLen is based on the invariant,
but that the invariant is not fully preserved. However, this does not necessarily
result in an actual error at runtime. The goal is to find a bad case, i.e., an input
array for TimSort of a given length k, so that stackSize becomes larger than
runLen.length, causing an ArrayIndexOutOfBoundsException in pushRun. In

6 TimSort can also be used to sort only a segment of the input array; in this case, len
should be based on the length of this segment. In the current implementation this
is not the case, which negatively affects performance.

this section we show how to achieve the worst case: the maximal size of a stack of
run lengths which does not satisfy the invariant. For certain choices of k this does
result in an exception during execution of TimSort, as we show in Section 4.1.
Not only does this expose the bug, our analysis also provides a safe choice for
runLen.length that avoids the out-of-bounds exception.

The general idea is to construct a list of run lengths that leads to the worst
case. This list is then turned into a concrete input array for TimSort by gener-
ating actual runs with those lengths. For instance, a list (2,3,4) of run lengths is
turned into the input array (0,1,0,0,1,0,0,0,1) of length k = 9.

The sum of all runs should eventually sum to k. Hence, to maximize the stack
size, the runs in the worst case are short. A run that breaks the invariant is too
short, so the worst case occurs with a maximal number of runs that break the
invariant. However, the invariant holds for at least half of the entries:

Lemma 1. Throughout execution of TimSort, the invariant cannot be violated
at two consecutive runs in runLen.

Proof. Suppose, to the contrary, that two consecutive entries A and B of the
run length stack violate the invariant. Consider the moment that the error at
B is introduced, so A is already incorrect. The analysis of Sect. 3 reveals that
there must be exactly four more entries after B on the stack (labelled C . . . F)
satisfying D ≤ E + F and D < F to trigger the merge below:

A× B C D E F
A× B× C D + E F

Merging stops here (otherwise B× would be corrected), and we have 1. D < F
and 2. C > D +E +F . Next, consider the moment that C was generated. Since
A× is incorrect, C must be the result of merging some C1 and C2:

A B C1 C2 D′

This gives: 3. C1 + C2 = C, 4. C1 > C2, 5. C1 < D′, 6. D′ ≤ D. Finally, all
run lengths must be positive, thus: 7. E > 0. It is easy to check that constraints
1.–7. yield a contradiction. ut

The above lemma implies that in the worst case, runLen has the form:

Yn, X
×
n , Yn−1, X

×
n−1, . . . , Y1, X1 (1)

where each Xi invalidates the invariant, i.e., Xi ≤ Yi−1 + Xi−1, and each Yi

satisfies it, i.e., Yi > Xi + Yi−1 (except when i ≤ 2, since at least 5 elements are
required to break the invariant). In the remainder of this section we show how
to compute an input (in terms of run lengths) on which execution of TimSort
results in a run length stack of the form (1).

Observe that the above sequence (1) can not be reached by simply choosing
an input with these run lengths: each Xi would be merged away when Xi−1 is
pushed. Instead, we choose the input run lengths in such a way that each Xi

arises as a sum of elements xi
1, . . . , x

i
ni

and each Yi occurs literally in the input.

In order to calculate the Xi’s, suppose the top three elements of the stack are
Xi, Yi−1, x

i−1
1 . Since Xi must not be merged away, we have Xi > Yi−1 + xi−1

1 .
Thus, the minimal choice of Xi’s and Yi’s is:

Xi = Yi−1 + xi−1
1 + 1 Yi = Xi + Yi−1 + 1 (2)

The base cases are X1 = m (with x1
1 = m) and Y1 = m + 4, where m = 16 is

the minimal run length. From (2) we then derive that X2 = 20 + 16 + 1 = 37.
The next step is to show how the elements xi

j are computed from Xi, i ≥ 2. To

minimize the Xi’s and Yi’s, each xi
1 should be as small as possible. Moreover,

the merging pattern that arises while adding xi
j ’s needs to preserve the previous

Xi+1 and Yi+1, thus the top three elements of the stack before pushing xj should
be (omitting the index i from the x’s for readability):

Xi+1, Yi, x1 + . . . + xj−2, xj−1

Pushing xj should then result in the merge:

Xi+1, Yi, x1 + . . . + xj−2 + xj−1, xj .

and merging should stop, so x1 + . . .+ xj−1 > xj . The above merge only occurs
when x1 + . . . + xj−2 < xj . Thus, we obtain the desired merging behaviour by
choosing the sequences x1, . . . , xni such that Xi = x1 + . . . + xni and

for all j ≤ ni : xj ≥ m and x1 + . . . + xj−2 < xj < x1 + . . . + xj−1 (3)

Further, x1 should be chosen as small as possible to minimize Xi+1 (2).
To compute such a sequence x1, . . . , xn from a number X, we distinguish

between the case that X lies within certain intervals for which we have a fixed
choice (with optimal x1), and other ranges, for which we apply a default compu-
tation. The default computation starts with xn = X − (bX2 c+ 1) and proceeds

to compute x1, . . . , xn−1 from bX2 c + 1. By repeatedly applying this computa-
tion, we always end up in one of the intervals for which we have a fixed choice.
Because of space limitations, we treat only the fixed choices for the intervals
[m, 2m], [2m+ 1, 3m+ 2] and [3m+ 3, 4m+ 1]. In the first case the only possible
choice is x1 = X. In the second case we take x1 = bX2 c + 1 and x2 = X − x1.
Finally, in the last case we take x1 = m + 1, x2 = m and x3 = X − (x2 + x1).

Proposition 1. For any X, the above strategy yields a sequence that satis-
fies (3) with a minimal value of x1.

Proof. We have fixed choices for any X in [0, 2m], [2m+1, 3m+2], [3m+3, 4m+1],
[5m+5, 6m+5], [8m+9, 10m+9], [13m+15, 16m+17]. An X in the first interval
results in a sequence of length 1, in the second a sequence of length 2, etc. Except
for the first two intervals x1 = m + 1 is always chosen. The requirements (3)
imply x1 > x2 ≥ m, thus for any X > m, x1 = m + 1 is the best we can hope
for. Next, observe that if x1 = m+ 1 is produced for X ∈ [l, r] then x1 = m+ 1,
for any X ∈ [2l− 1, 2r − 1] as well (since then (bX2 c+ 1) ∈ [l, r]). Applying this

to the interval [3m + 3, 4m + 1] gives [6m + 5, 8m + 1], which combined with
[5m+ 5, 6m+ 5] gives [5m+ 5, 8m+ 1]. We thus also get [10m+ 9, 16m+ 1], and
combining this with [8m + 9, 10m + 9] yields [8m + 9, 16m + 1]. Combining the
latter with [13m+15, 16m+17] we obtain [8m+9, 16m+17]. Since this interval
gives the optimal x1 = m+ 1, so do [16m+ 17, 32m+ 33], [32m+ 33, 64m+ 65],
etc. Hence, we have the minimal x1 = m + 1, for any X ≥ 8m + 9.

For X ≤ 8m + 9 a (tedious) case analysis shows minimality of x1. ut

All in all, we have shown how to construct an input that generates the worst
case which is of the form (1) and where each of the sequences of xi

j ’s is con-

structed using the above strategy, yielding a minimal xi
1 by Proposition 1.

Theorem 1. An input corresponding to the sequence of run lengths as con-
structed above produces the largest possible stack of run lengths for a given input
length, which does not satisfy the invariant.

4.1 Breaking TimSort

We implemented the above construction of the worst case [7]. Executing TimSort
on the generated input yields the following stack sizes (given array sizes):

array size 64 128 160 65536 131072 67108864 1073741824

required stack size 3 4 5 21 23 41 49

runLen.length 5 10 10 19 (24) 40 40 40

The table above lists the required stack size for the worst case of a given
length. The third row shows the declared bounds in the TimSort implementation
(see Listing 4). The number 19 was recently updated to 24 after a bug report1.

This means that, for instance, the worst case of length 160 requires a stack
size of 5, and thus the declared runLen.length = 10 suffices. Further observe
that 19 does not suffice for arrays of length at least 65536, whereas 24 does. For
the worst case of length 67108864, the declared bound 40 does not suffice, and
running TimSort yields an unpleasant result:

Listing 5. Exception during exection of TimSort

Exception in thread ”main” java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:386)
at java.util.TimSort.sort(TimSort.java:213)
at java.util.Arrays.sort(Arrays.java:659)
at TestTimSort.main(TestTimSort.java:18)

5 Verification of a fixed version

In Sect. 3 we showed that mergeCollapse does not fully re-establish the in-
variant, which led to an ArrayIndexOutOfBoundsException in pushRun. The
previous section provides a possible workaround: adjust runLen.length using a
worst-case analysis. That section also made clear that this analysis is based on
an intricate argument that seems infeasible for a mechanized correctness proof.

Therefore, we provide a more principled solution. We fix mergeCollapse so
that the class invariant is re-established, formally specify the new implemen-
tation in JML and provide a formal correctness proof, focussing on the most
important specifications and proof obligations. This formal proof has been fully
mechanized in the theorem prover KeY [4] (see Sect. 6 for an experience report).

Listing 6. Fixed version of mergeCollapse

1 private void mergeCollapse() {
2 while (stackSize > 1) {
3 int n = stackSize − 2;
4 if (n >= 1 && runLen[n−1] <= runLen[n] + runLen[n+1]
5 || n >= 2 && runLen[n−2] <= runLen[n] + runLen[n−1]) {
6 if (runLen[n−1] < runLen[n+1])
7 n−−;
8 } else if (runLen[n] > runLen[n+1]) {
9 break; // Invariant is established

10 }
11 mergeAt(n);
12 }
13 }

Listing 6 shows the new version of mergeCollapse. The basic idea is to check
validity of the invariant on the top 4 elements of runLen (lines 4, 5 and 8), instead
of only the top 3, as in the original implementation. Merging continues until the
top 4 elements satisfy the invariant, at which point we break out of the merging
loop (line 9). We prove below that this ensures that all runs obey the invariant.

To obtain a human readable specification and a feasible (mechanized) proof,
we introduce suitable abstractions using the following auxiliary predicates:

Name Definition

elemBiggerThanNext2(arr, idx) (0 ≤ idx ∧ idx + 2 < arr.length)→
arr[idx] > arr[idx + 1] + arr[idx + 2]

elemBiggerThanNext(arr, idx) 0 ≤ idx ∧ idx + 1 < arr.length→
arr[idx] > arr[idx + 1]

elemLargerThanBound(arr, idx, v) 0 ≤ idx < arr.length→ arr[idx] ≥ v

elemInv(arr, idx, v) elemBiggerThanNext2(arr, idx)∧
elemBiggerThanNext(arr, idx)∧
elemLargerThanBound(arr, idx, v)

Intuitively, the formula elemInv(runLen, i, 16) is that runLen[i] satisfies the
invariant as given in lines 5—6 of Listing 3, and has length at least 16 (recall that
this is a lower bound on the minimal run length). Aided by these predicates we
are ready to express the formal specification, beginning with the class invariant.

Class Invariant. A class invariant is a property that all instances of a class
should satisfy. In a design by contract setting, each method is proven in isolation
(assuming the contracts of methods that it calls), and the class invariant can
be assumed in the precondition and must be established in the postcondition,
as well as at all call-sites to other methods. The latter ensures that it is safe
to assume the class invariant in a method precondition. A precondition in JML
is given by a requires clause, and a postcondition is given by ensures. To
avoid manually adding the class invariant at all these points, JML offers an

invariant keyword which implicitly conjoins the class invariant to all pre- and
postconditions. A seemingly natural candidate for the class invariant states that
all runs on the stack satisfy the invariant and have a length of at least 16.
However, pushRun does not preserve this invariant. Further, inside the loop of
mergeCollapse (Listing 6) the mergeAt method is called, so the class invariant
must hold. But at that point the invariant can be temporarily broken by the last
4 runs in runLen due to ongoing merging. Finally, the last run pushed on the
stack in the main sorting loop (Listing 1) can be shorter than 16 if fewer items
remain. The class invariant given below addresses all this:

Listing 7. Class invariant of TimSort

1 /∗@ invariant
2 @ runBase.length == runLen.length
3 @ && (a.length < 120 ==> runLen.length==4)
4 @ && (a.length >= 120 && a.length < 1542 ==> runLen.length==9)
5 @ && (a.length>=1542 && a.length<119151 ==> runLen.length==18)
6 @ && (a.length >= 119151 ==> runLen.length==39)
7 @ && (runBase[0] + (\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i]) <= a.length)
8 @ && (0 <= stackSize && stackSize <= runLen.length)
9 @ && (\forall int i; 0<=i && i<stackSize−4; elemInv(runLen, i, 16))

10 @ && elemBiggerThanNext(runLen, stackSize−4)
11 @ && elemLargerThanBound(runLen, stackSize−3, 16)
12 @ && elemLargerThanBound(runLen, stackSize−2, 16)
13 @ && elemLargerThanBound(runLen, stackSize−1, 1)
14 @ && elemLargerThanBound(runBase, 0, 0)
15 @ && (\forall int i; 0<=i && i<stackSize−1;
16 @ (\bigint)runBase[i] + runLen[i] == runBase[i+1]);
17 @∗/

Lines 3–6 specify the length of runLen in terms of the length of the input
array a. Line 7–8 formalizes the property that the length of all runs together
(i.e., the sum of all run lengths) does not exceed a.length. Line 9 contains
bounds for stackSize. Line 10 expresses that all but the last 4 elements satisfy
the invariant. The properties satisfied by the last 4 elements are specified on
lines 11–14. Lines 15–17 formalize that run i starts at runBase[i] and extends
for runLen[i] elements. As JML by default uses Java integer types, which can
overflow, we need to make sure this does not happen by casting those expressions
that potentially can overflow to \bigint.

The pushRun method. This method adds a new run of length runLen to the
stack, starting at index runBase7. Lines 4–5 of Listing 8 express that the starting
index of the new run (runBase) directly follows after the end index of the last
run (at index stackSize-1 in this.runLen and this.runBase). The assignable
clause indicates which locations can be modified; intuitively the assignable clause
below says that previous runs on the stack are unchanged.

Listing 8. Contract of pushRun

1 /∗@ normal behavior
2 @ requires
3 @ runLen > 0 && runLen <= a.length && runBase >= 0
4 @ && (stackSize > 0 ==> runBase ==
5 @ (\bigint)this.runBase[stackSize−1]+this.runLen[stackSize−1])

7 These parameters shadow the instance variables with the same name; to refer to the
instance variables in specifications one prefixes this, just like in Java.

6 @ && ((\bigint)runLen + runBase <= a.length)
7 @ && (\forall int i; 0<=i && i<ts.stackSize−2; elemInv(ts.runLen,i,16))
8 @ && elemBiggerThanNext(ts.runLen, ts.stackSize−2)
9 @ && elemLargerThanBound(ts.runLen, ts.stackSize−1, 16)

10 @ ensures
11 @ this.runBase[\old(stackSize)] == runBase
12 @ && this.runLen[\old(stackSize)] == runLen
13 @ && stackSize == \old(stackSize)+1;
14 @ assignable
15 @ this.runBase[stackSize], this.runLen[stackSize], this.stackSize;
16 @∗/
17 private void pushRun(int runBase, int runLen)

The mergeCollapse method. The new implementation of mergeCollapse restores
the invariant at all elements in runLen; this is stated in lines 6–7 of Listing 9.
As mergeCollapse just merges existing runs, the sum of all run lengths should
be preserved (lines 8–9). Line 10 expresses that the length of the last run on
the stack after merging never decreases (merging increases it). This is needed to
ensure that all runs, except possibly the very last one, have length ≥ 16.

Listing 9. Contract of mergeCollapse

1 /∗@ normal behavior
2 @ requires
3 @ stackSize > 0 && elemInv(runLen, stackSize−4, 16)
4 @ && elemBiggerThanNext(runLen, stackSize−3);
5 @ ensures
6 @ (\forall int i; 0<=i && i<stackSize−2; elemInv(runLen, i, 16))
7 @ && elemBiggerThanNext(runLen, stackSize−2)
8 @ && ((\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i])
9 @ == \old((\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i])))

10 @ && (runLen[stackSize−1] >= \old(runLen[stackSize−1]))
11 @ && (0 < stackSize && stackSize <= \old(stackSize));
12 @∗/
13 private void mergeCollapse()

The loop invariant of mergeCollapse is given in Listing 10. As discussed
above, merging preserves the sum of all run lengths (lines 2–3). Line 4 expresses
that all but the last four runs satisfy the invariant: a merge at index stackSize-3

(before merging) can break the invariant of the run at index stackSize-4 af-
ter merging (beware: stackSize was decreased). Lines 5–8 state the conditions
satisfied by the last 4 runs. Lines 9–10 specify consistency between runLen and
runBase. The last line states that stackSize can only decrease through merging.

Listing 10. Loop Invariant of mergeCollapse

1 /∗@ loop invariant
2 @ ((\sum int i; 0<=i && i<stackSize; runLen[i])
3 @ == \old((\sum int i; 0<=i && i<stackSize; runLen[i])))
4 @ && (\forall int i; 0<=i && i<stackSize−4; elemInv(runLen, i, 16))
5 @ && elemBiggerThanNext(runLen, stackSize−4)
6 @ && elemLargerThanBound(runLen, stackSize−3, 16)
7 @ && elemLargerThanBound(runLen, stackSize−2, 16)
8 @ && elemLargerThanBound(runLen, stackSize−1, 1)
9 @ && (\forall int i; 0<=i && i<stackSize−1;

10 @ (\bigint)runBase[i] + runLen[i] == runBase[i+1])
11 @ && (runLen[stackSize−1] >= \old(runLen[stackSize−1]))
12 @ && (0 < stackSize && stackSize <= \old(stackSize));
13 @∗/

To prove the contracts, several verification conditions must be established. We
discuss the two most important ones. The first states that on entry of pushRun,

the stackSize must be smaller than the stack length. The ArrayIndexOutOf-
BoundsException of Listing 5 was caused by the violation of that property:

requires(pushRun) && cl. invariant ==> stackSize < this.runLen.length

Proof. Line 9 of the class invariant implies stackSize ≤ this.runLen.length.
We derive a contradiction from stackSize = this.runLen.length by consid-
ering four cases: a.length < 120, or a.length ≥ 120 && a.length < 1542, or
a.length ≥ 1542 && a.length < 119151, or a.length ≥ 119151. We detail the
case a.length < 120, the other cases are analogous. Since a.length < 120, line
3 of the class invariant implies stackSize = this.runLen.length = 4.

Let SUM = this.runLen[0] + . . . + this.runLen[3]. Suitable instances of
lines 16–17 of the class invariant imply this.runBase[3] + this.runLen[3]

= this.runBase[0]+SUM. Together with line 15 of the class invariant and lines
4–6 of the pushRun contract we get runLen + SUM < 120. But the \requires

clause of pushRun implies runLen > 0, so SUM < 119. The \requires clause also
implies runLen[3] ≥ 16 (line 9), runLen[2] ≥ 17 (line 8), runLen[1] ≥ 34 and
runLen[0] ≥ 52 (line 7). So SUM ≥ 16 + 17 + 34 + 52 = 119, a contradiction. ut

The second verification condition arises from the break statement in the
mergeCollapse loop (Listing 6, line 9). At that point the guards on line 4 and
5 are false, the one on line 8 is true, and the \ensures clause of mergeCollapse
(which implies that the invariant holds for all runs in runLen) must be proven: loop invariant of mergeCollapse && n = stackSize-2

&& n > 0 ==> runLen[n-1] > runLen[n] + runLen[n+1]
&& n > 1 ==> runLen[n-2] > runLen[n-1] + runLen[n]
&& n >= 0 ==> runLen[n] > runLen[n+1]

==> \ensures(mergeCollapse)

Proof. Preservation of sums (lines 8–9 of \ensures) follows directly from lines
2–3 of the loop invariant. Lines 10–11 of \ensures are implied by lines 11–12 of
the loop invariant. The property elemBiggerThanNext(runLen, stackSize-2)

follows directly from n >= 0 ==> runLen[n] > runLen[n+1]. We show by cases
that \forall int i; 0<=i && i<stackSize-2; elemInv(runLen, i, 16).

– i < stackSize− 4: from line 4 of the loop invariant.
– i = stackSize− 4: from line 3 of the premise. The original mergeCollapse

implementation (Listing 3) did not cover this case, which was the root cause
that the invariant elemInv(runLen, i, 16) could be false for some i.

– i = stackSize− 3: from the second line of the premise. ut

Of course, these proof obligations (plus all others) were formally shown in KeY.

5.1 Experimental evaluation

The new version of mergeCollapse passes all relevant OpenJDK unit tests8.
However, it introduces a potential extra check in the loop, which might affect

8
http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/70e3553d9d6e/test/java/util/Arrays/
Sorting.java

performance. We compared the new version with the OpenJDK implementation
using the benchmark created by the original author of the Java port of TimSort.
This benchmark is part of OpenJDK9. It generates input of several different
types, of varying sizes and repetitions. We executed the benchmark on three
different setups: (Sys. 1): MacBookPro, Intel Core i7 @ 2.6 GHz, 8 GB, 4 core;
(Sys. 2): Intel Core i7 @ 2.8 GHz, 6 GB, 2 core; (Sys. 3): Intel(R) Core(TM)
i7 @ 3.4 GHz, 16GB, 4 core. The table below summarizes the average speedup
over 25 runs on each setup (see [7] for full results). The speedup is computed by
dividing the benchmark result of the new version by the result of the original
version. Thus, a value larger than 1 means that the new version wins.

Sys. 1 Sys. 2 Sys. 3 Average

ALL EQUAL INT 0.9796 1.0094 1.0058 0.9983
ASCENDING 10 RND AT END INT 0.9982 0.9997 0.9942 0.9974
ASCENDING 3 RND EXCH INT 1.0084 1.0130 1.0021 1.0079
ASCENDING INT 0.9810 1.0082 1.0039 0.9977
DESCENDING INT 0.9740 0.9897 0.9868 0.9835
DUPS GALORE INT 0.9910 0.9980 0.9981 0.9957
PSEUDO ASCENDING STRING 0.9652 0.9926 0.9929 0.9836
RANDOM BIGINT 1.0064 1.0057 1.0047 1.0056
RANDOM INT 0.9912 0.9989 0.9993 0.9965
RANDOM WITH DUPS INT 0.9956 0.9971 0.9999 0.9975
WORST CASE 1.0062 1.0075 1.0127 1.0088
All together (average) 0.9906 1.0018 1.0000 0.9975

The first column contains the type of input. We added WORST CASE, which
generates the worst case as presented in Section 4. This case is important because
it discriminates the two versions as much as possible. The other types of input
are defined in ArrayBuilder.java which is part of the OpenJDK benchmark.
We conclude that the new version does not negatively affect the performance.

6 Experience with KeY

We constructed a mechanized proof in KeY, showing correctness of the class
invariant, the absence of exceptions and termination for all methods that affect
the bug. Due to the complexity of Timsort, this requires interactivity as well as
powerful automated search strategies.

However, two methods (mergeLo and mergeHi) we did not manage despite
a considerable effort. Each has over 100 lines of code and exhibits a complex
control flow with many nested loops, six breaks, and several if-statements. This
leads to a memory overflow while proving due to an explosion in the number of
symbolic execution paths. These methods obviously do not invalidate the class
invariant as they do not access runLen and runBase. All other 15 methods were
fully verified, which required specifications of all methods. In total, there are
460 lines of specifications, compared to 928 lines of code (including whitespace).

Our analysis resulted in one of the largest case studies carried out so far in
KeY with over 2 million proof steps in total. The KeY proof targets the ac-

9
http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/70e3553d9d6e/test/java/util/TimSort

tual implementation in the OpenJDK standard library, rather than an idealized
model of it. That implementation uses low-level bitwise operations, abrupt termi-
nation of loops and arithmetic overflows. This motivated several improvements
to KeY, such as new support for reasoning about operations on bit-vectors.

Rule Apps Interact Call Loop Q-inst Spec LoC

binarySort 536.774 470 3 2 16 27 35
sort(a,lo,hi,c) 235.632 695 14 1 54 38 52
mergeCollapse 415.133 1529 7 1 225 48 13
mergeAt 279.155 690 4 0 1064 32 39
pushRun 26.248 94 0 0 69 18 5
mergeForceColl 53.814 294 1 1 113 39 10

Other (sum) 664.507 1257 135 20 195 132 179

Total 2.211.263 5029 164 25 1736 334 333

One reason for the large number of proof steps is their fine granularity. How-
ever, notice that only a relatively small number was applied manually (“Inter-
act”). Most of the manual interactions are applications of elementary weakening
rules (hiding large irrelevant formulas) for guiding the automated proof search.
Approximately 5-10% required ingenuity, such as introducing crucial lemmas
and finding suitable quantifier instantiations (“Q-inst”). The columns (“Call”)
and (“Loop”) show the number of rule applications concerning calls and loops
encountered in symbolic execution paths. Since multiple paths can lead to the
same call, this is higher than the number of calls in the source code. The last two
columns show the number of lines of specification and code (without comments).

The specification was constructed incrementally, by repeated attempts to
complete the proof and, when failing, enhancing the (partial) specifications based
on the feedback given by KeY. In particular, KeY can provide a symbolic counter
example. For instance, KeY produces the following uncloseable goal when veri-
fying the original mergeCollapse implementation:

runLen[stackSize−3] > runLen[stackSize−2] + runLen[stackSize−1],
\forall int i; 0<=i && i<stackSize−4; runLen[i] > runLen[i+1]+runLen[i+2]
==> runLen[stackSize−4] > runLen[stackSize−3] + runLen[stackSize−2]

The quantified formula says: the invariant holds except for the last five runs. The
first formula establishes it for the last three runs. Nevertheless, it is broken by the
fourth-last run, as the right hand side states. This information shows precisely
where the invariant breaks (Section 3) and suggests how to fix the algorithm
(Section 5): add a test for index stackSize-4 “somewhere”. Due to symbolic
execution, KeY produces proof trees that correspond closely to the structure of
the program. This allows identifying where to add the extra check in the code.

While specifications were written incrementally, small changes to the class
invariant required reproving instance methods almost from scratch. Indeed, a
major challenge for properly supporting this incremental process is: how to avoid
proof duplication? This could be partially addressed by introducing user-defined
predicates to abstract from certain concrete parts of the specification. KeY al-
ready supports ad hoc introduction of user-defined predicates (Section 5). A
systematic treatment is given in [5, 10]; its integration in KeY is ongoing work.

To reduce the number of symbolic paths, we heavily used block contracts
around if-statements as a form of state merging. Current work focusses on more
general techniques for merging different symbolic execution branches.

7 Conclusion and Future Work

Beyond the correctness result obtained in this paper, our case study allows to
draw a number of more general conclusions:

1. State-of-art formal verification systems allow to prove functional correctness
of actual implementations of complex algorithms that satisfy a minimum
degree of structure and modularity.

2. Even core library methods of mainstream programming languages contain
subtle bugs that can go undetected for years. Extensive testing was not able
to exhibit the bug. Sections 3 and 4 explain why: the smallest counterexam-
ple is an array of 67+ million elements (with non-primitive type) and a very
complex structure. It is interesting to note that the affected sorting imple-
mentation was ported to Java from the Python library.10 It turns out that
the bug is present in Python as well, ever since the method was introduced.11

It can be fixed in the same manner as described above. Though the bug is
unlikely to occur by accident, it can be used in denial-of-service attacks12.

3. Software verification is often considered too expensive. However, precise for-
mal specification allowed us to discover that the invariant is not preserved,
in an afternoon. Section 6 shows that this fact also inevitably arises dur-
ing verification with KeY. The combination of interactivity with powerful
automated strategies was essential to formally verify the fixed version.

4. Static analysis and model checking are not precise, expressive and modular
enough to fully capture the functionality of the involved methods. Expressive
contracts are crucial to break down the problem into feasible chunks.

We conclude that functional deductive verification of core libraries of main-
stream programming languages with expressive, semi-automated verification tools
is feasible. To reach beyond the current limits, improvements based on program
transformations, refinement, and proof reuse are mandatory. Further, it is clearly
worthwhile: the OpenJDK implementation of sort() is used daily in billions of
program runs, often in safety- or security-critical scenarios. The infamous Intel
Pentium bug cost a lot of revenue and reputation, even though the actual oc-
currence of a defect was not more likely than in the case of TimSort. Since then,
formal verification of microprocessors is standard (e.g., [2]). Isn’t it time that we
begin to apply the same care to core software components?

10 http://svn.python.org/projects/python/trunk/Objects/listsort.txt
11 As the Python version works with 64bit integer types and uses larger bounds for

runLen, it is even more unlikely to occur, however.
12 http://bugs.java.com/view_bug.do?bug_id=6804124

References

1. W. Ahrendt, W. Mostowski, and G. Paganelli. Real-time Java API specifications
for high coverage test generation. In Proceedings of the 10th International Work-
shop on Java Technologies for Real-time and Embedded Systems, JTRES ’12, pages
145–154, New York, NY, USA, 2012. ACM.

2. B. Akbarpour, A. T. Abdel-Hamid, S. Tahar, and J. Harrison. Verifying a synthe-
sized implementation of IEEE-754 floating-point exponential function using HOL.
Comput. J., 53(4):465–488, 2010.

3. B. Beckert and R. Hähnle. Reasoning and verification. IEEE Intelligent Systems,
29(1):20–29, Jan.–Feb. 2014.

4. B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag, 2006.

5. R. Bubel, R. Hähnle, and M. Pelevina. Fully abstract operation contracts. In
T. Margaria and B. Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation, 6th International Symposium, ISoLA 2014, Corfu,
Greece, LNCS. Springer, Oct. 2014. In this proceedings.

6. S. de Gouw, F. S. de Boer, and J. Rot. Proof pearl: The KeY to correct and stable
sorting. Journal of Automated Reasoning, 53(2):129–139, 2014.

7. S. de Gouw et al. Web appendix of this paper, 2015. http://envisage-project.
eu/?page_id=1412.

8. J.-C. Filliâtre and N. Magaud. Certification of sorting algorithms in the system
Coq. In Theorem Proving in Higher Order Logics: Emerging Trends, Nice, France,
1999.

9. M. Foley and C. A. R. Hoare. Proof of a recursive program: Quicksort. Computer
Journal, 14(4):391–395, 1971.

10. R. Hähnle, I. Schaefer, and R. Bubel. Reuse in software verification by abstract
method calls. In M. P. Bonacina, editor, Proc. 24th Conference on Automated
Deduction (CADE), Lake Placid, USA, volume 7898 of LNCS, pages 300–314.
Springer-Verlag, 2013.

11. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
P. Chalin, D. M. Zimmerman, and WernerDietl. JML Reference Manual, May 2013.
Draft revision 2344.

12. P. M. McIlroy. Optimistic sorting and information theoretic complexity. In V. Ra-
machandran, editor, Proc. Fourth Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms, Austin, pages 467–474. ACM/SIAM, 1993.

13. W. Mostowski. Formalisation and verification of Java Card security properties in
dynamic logic. In M. Cerioli, editor, Proc. Fundamental Approaches to Software
Engineering (FASE), Edinburgh, volume 3442 of LNCS, pages 357–371. Springer-
Verlag, Apr. 2005.

14. W. Mostowski. Fully verified Java Card API reference implementation. In B. Beck-
ert, editor, Proc. 4th Intl. Verification Workshop in connection with CADE-21,
Bremen, Germany, volume 259 of CEUR Workshop Proceedings. CEUR-WS.org,
2007.

15. T. Peters. Timsort description, accessed February 2015. http://svn.python.org/
projects/python/trunk/Objects/listsort.txt.

16. C. Sternagel. Proof Pearl - A mechanized proof of GHC’s mergesort. J. Autom.
Reasoning, 51(4):357–370, 2013.

