
Enhanced Coinduction

Jurriaan Rot

Copyright 2015 by Jurriaan Rot
Open-access: https://openaccess.leidenuniv.nl
Typeset using LATEX, diagrams generated using XY-PIC

Printed by Ridderprint B.V.
ISBN 978-94-6299-174-3

The author was funded by the Netherlands Organization for Scientific Research
(NWO) as part of the project Coinductive Calculi for Regular Expressions (CoRE).
The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics). The author was
employed at Leiden University, and also used facilities of Centrum Wiskunde en
Informatica (CWI).

Enhanced Coinduction

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op donderdag 15 oktober 2015

klokke 15:00 uur

door

Jurriaan Cornelis Rot
geboren te Amsterdam

in 1987

Promotores: prof. dr. J.J.M.M. Rutten (CWI & Radboud Universiteit)
prof. dr. F.S. de Boer

Copromotor: dr. M.M. Bonsangue

Promotiecommissie: dr. H.H. Hansen (Technische Universiteit Delft)
prof. dr. B.P.F. Jacobs (Radboud Universiteit)
dr. B. Klin (University of Warsaw)
prof. dr. U. Montanari (University of Pisa)
prof. dr. F. Arbab (secretaris)
prof. dr. J.N. Kok (voorzitter)

Contents

1 Introduction 9
1.1 Coinductive reasoning . 9
1.2 Coalgebras . 11

1.2.1 Classical and coalgebraic coinduction 12
1.3 Enhanced coinduction . 12

1.3.1 Coinductive proofs . 13
1.3.2 Coinductive definitions . 13

1.4 Related work . 15
1.5 Outline . 16

2 Coinduction for languages 19
2.1 Bisimulations and coinduction . 20

2.1.1 Regular operations . 21
2.2 Bisimulation up-to for regular operations 22
2.3 Sound operations for bisimulation up-to 26

2.3.1 Language equations with complement and intersection . . . 30
2.3.2 Shuffle (closure) . 31
2.3.3 Causal functions . 32

2.4 Simulation (up-to) . 34
2.5 Discussion and related work . 37

3 Preliminaries 41
3.1 Coalgebras . 42

3.1.1 Coinductive definitions . 44
3.1.2 Bisimulations and coinductive proofs 46

3.2 Classical and coalgebraic coinduction 48
3.2.1 Coalgebraic bisimulations via relation lifting 50
3.2.2 Classical coinduction in a category 51

3.3 Liftings and coinduction in a fibration 52
3.3.1 Fibrations . 52
3.3.2 Coinductive predicates in a fibration 55

3.4 Algebras . 57
3.4.1 Monads . 58

6 Contents

3.5 Bialgebras and distributive laws . 60
3.5.1 Distributive laws of monads over (copointed) functors . . . 62
3.5.2 Abstract GSOS . 63

4 Bisimulation up-to 67
4.1 Progression and bisimulation up-to 68
4.2 Examples . 69
4.3 Compatible functions . 75
4.4 Compatibility results . 77

4.4.1 Relational composition . 79
4.4.2 Contextual closure . 81
4.4.3 Bisimulation up-to modulo bisimilarity 83

4.5 Behavioural equivalence up-to . 84
4.6 Discussion and related work . 88

5 Coinduction up-to 91
5.1 Compatible functors . 92
5.2 Compatibility results . 95

5.2.1 Behavioural equivalence . 96
5.2.2 Relational composition and equivalence 98
5.2.3 Contextual closure . 101

5.3 Examples . 108
5.3.1 Weighted language inclusion 108
5.3.2 Divergence of processes . 111

5.4 Compositional predicates . 113
5.4.1 Simulation up-to . 114

5.5 Discussion and related work . 117

6 Bialgebraic semantics with equations 119
6.1 Assignment rules . 121
6.2 Integrating assignment rules in abstract GSOS 125
6.3 Structural congruences . 132
6.4 Discussion and related work . 138

7 Presenting distributive laws 141
7.1 Quotients of monads . 142
7.2 Quotients of distributive laws . 148

7.2.1 Distributive laws over plain behaviour functors 148
7.2.2 Distributive laws over copointed functors 154
7.2.3 Distributive laws over comonads 156

7.3 Quotients of bialgebras . 157
7.4 Discussion and related work . 159

Bibliography 161

Index 174

Contents 7

Curriculum vitae 177

Acknowledgements 179

Samenvatting 181

Chapter 1

Introduction

Induction is a proof and definition principle which is standard in mathematics and
computer science. Coinduction, its dual, is particularly suitable for defining infinite
and circular objects and proving properties about them. It is becoming increasingly
clear that coinduction provides a foundation for many infinite structures arising in
computer science, and in recent years it has been the subject of intense research
activity. Coinductive techniques have been used to reason about process calculi
and their behavioural properties (e.g., [Mil89, Par81, AFV01, TP97]), data struc-
tures such as a streams or infinite trees [HJ97, Rut03, APTS13], languages and
automata [BP13, Rut98a, Jac06a], recursive types [BH98, AC14], potentially infi-
nite data structures in functional languages and theorem provers [BPT15, APTS13,
HNDV13, LGCR09], and much more [San12a, SR12, KS14].

The broad spectrum of coinduction is unified by the theory of coalgebras, which
is a general approach to state-based systems and infinite behaviour. In this intro-
ductory chapter, we discuss the notions of coalgebra and coinduction, and describe
the contents of this thesis. First, we give the basic intuition of coinduction through
an example, in Section 1.1. Then we provide a short background on coalgebras,
in Section 1.2. The main aims and contributions of this thesis are stated in Sec-
tion 1.3, related work in Section 1.4 and the outline in Section 1.5.

1.1 Coinductive reasoning

Induction is most commonly known as a proof principle involving the natural num-
bers: to prove that a property holds for all natural numbers, one proves (a) that
it holds for 0, and (b) that if it holds for n, then it also holds for the successor
n + 1. The validity of this proof principle arises from the construction of natural
numbers as the least set that contains 0 and is closed under the successor function.
In general, induction concerns the least object satisfying some property, whereas
coinduction concerns the greatest object satisfying some property (in a suitable
universe).

9

10 Chapter 1. Introduction

Consider, for instance, the set of finite lists of integers. This set is defined
inductively as follows: [] is a list (the empty list), and if n is an integer and l is a list
then their concatenation n : l is again a list. The set of lists is by definition the least
set that contains the empty list and is closed under concatenation. In contrast, the
set of streams (infinite sequences) of integers is defined coinductively. A stream
s decomposes as s0 : s′ where s0 is an integer (the head of the stream) and s′ is
again a stream (the tail). The set of streams is defined as the greatest set of which
each element decomposes in this way as a head and a tail.

Lists and streams are examples of inductively and coinductively defined objects.
We now turn to proof principles. Suppose we have two functions f, g on finite lists
that we would like to prove equal. To do so we may prove:

1. f([]) = g([]), and

2. for any list l and any natural number n: if f(l) = g(l) then f(n : l) = g(n : l).

If these two conditions are satisfied then f(l) = g(l) for any list l, by the induction
proof principle. Intuitively, this proof principle is valid since every list is constructed
by concatenating a finite number of elements to the empty list. More precisely, the
above two conditions ensure that the set {l | f(l) = g(l)} of lists on which f and
g agree, contains the empty list and is closed under concatenation. Therefore, it
contains every list, i.e., f(l) = g(l) for every list l.

Now, suppose f, g are functions on streams. Then the above inductive proof
principle does not apply, since streams are not constructed from the empty list.
Instead, to prove equality of arbitrary streams s and t, we use the decomposition
of streams into heads and tails, and observe that s = t precisely if the heads s0 and
t0 are equal and their tails s′ and t′ are again equal. This observation does not help
very much yet, but the point is that equality of streams is the largest relation R on
streams such that for every (s, t) ∈ R:

1. s0 = t0 (the heads are equal), and

2. (s′, t′) ∈ R (the tails are again related).

A relation on streams that satisfies the above two properties is called a (stream)
bisimulation. The fact that the greatest bisimulation is the equality relation is called
the coinduction proof principle. By the coinduction proof principle, to prove that any
two streams are equal, it suffices to construct a bisimulation that relates them. In
particular, if we manage to construct a bisimulation that relates f(s) = g(s) for any
stream s, then f = g. The coinduction proof principle turns out to be a powerful
tool for reasoning about streams (e.g., [Rut03, NR11]).

Bisimulations were first introduced in concurrency theory by Milner and Park,
as a behavioural equivalence between processes [Mil80, Par81], providing the
foundation for much of the work on concurrency theory that followed. In fact,
bisimulations are of interest well beyond the study of processes, as a general coin-
ductively defined equivalence between systems with infinite behaviour, that comes
with a suitable proof principle. Indeed, bisimulations are also of interest to reason

1.2. Coalgebras 11

about streams, automata, and many other models of computation. The general
applicability of bisimulation and coinduction is based on the theory of coalgebras,
which we explain next.

1.2 Coalgebras

Inspired by Milner’s work on concurrent processes, Aczel applied bisimulations in
set theory, to define equality between non-wellfounded sets [Acz88]. Aczel’s work
is based on a coalgebraic presentation of transition systems, and he showed that
final coalgebras provide models of non-wellfounded sets as well as a mathemati-
cal interpretation of Milner’s process calculi. Aczel and Mendler then proposed a
coalgebraic generalization of bisimulations in terms of homomorphisms between
coalgebras, and used this to formulate a general coinductive proof principle for
behavioural equivalence [AM89].

The abstract coalgebraic definition of bisimulations in [AM89] and the associ-
ated coinductive proof principle formed the start of the development of coalgebra
as a mathematical theory of state-based systems. Coalgebras uniformly capture a
large class of models of interest, including various kinds of transition systems but
also automata and infinite or circular data structures. The common properties of
all these models are studied in universal coalgebra, as developed systematically by
Rutten in [Rut00].

The basic idea is that the type of a coalgebra is given by a functor, which de-
scribes the observations and dynamics. From a given functor that models the sys-
tem type of interest, one canonically obtains an associated notion of homomor-
phism and bisimulation. Moreover, under mild conditions on the functor there
exists a final coalgebra, which provides a canonical domain of behaviours. Every
coalgebra has a unique homomorphism into this final coalgebra. The unique exis-
tence of such a homomorphism is conceptually identified with a coinductive defi-
nition and proof principle [JR12]. Given a coalgebra, the homomorphism into the
final coalgebra assigns a semantics to it, which allows for coinductive definitions.
The fact that this homomorphism is unique gives rise to a proof method.

As an example, we consider stream systems, which are coalgebras for a functor
that maps a set X to the product N ×X with the natural numbers. A stream sys-
tem consists of a set X of states, an output function o : X → N, and a next state
function t : X → X. The final coalgebra for the functor under consideration con-
sists of all streams over the natural numbers, together with the functions head and
tail. The coalgebraic notions of bisimulation and coinduction for this functor in-
stantiate to stream bisimulations and the associated coinductive proof principle, as
described in the previous section. The coinductive definition principle, which states
that every stream system has a unique map into the final coalgebra of streams, al-
lows to define streams and operations on them by constructing suitable stream
systems [Rut03, HKR14].

All in all, coalgebra allows us to understand and prove properties of models of
computation at a high level of abstraction, and instantiate these results to a wide

12 Chapter 1. Introduction

variety of concrete systems. Indeed, the theory of coalgebras is a lively research
area, with new perspectives and results for such diverse areas as modal logic, op-
erational semantics, probabilistic systems, infinite data structures and automata
theory (see, e.g., [Jac12, Mis15, Sil15, JNRS11] for a recent overview).

1.2.1 Classical and coalgebraic coinduction

A standard formalization of coinduction, which we call classical coinduction, is in
terms of complete lattices rather than coalgebras [San12a]. We briefly comment on
its relation with coalgebras; more details are in Chapter 3 of this thesis. Classical
coinduction is based on Knaster-Tarski’s theorem, which states that every monotone
function f on a complete lattice has a greatest fixed point gfp(f). The existence
of gfp(f) is a definition principle, the fact that it is the greatest post-fixed point a
proof principle. For instance, the bisimilarity relation of a given transition system
is the greatest fixed point of a certain function on the complete lattice of relations
on the state space. The proof principle then states that bisimilarity is the greatest
bisimulation. By varying the function f one obtains different coinductive predi-
cates, such as similarity, weak or branching bisimilarity, divergence of processes,
increasing streams, language inclusion of automata, and so on.

Classical coinduction is very general in the kind of coinductive predicates that
can be defined, but it is specifically suitable for speaking about properties of a fixed
system. In contrast, coinduction as finality of coalgebras which model the systems
of interest (e.g., transition systems) carries a different intuition: it yields a struc-
tural account of the specific coinductive predicate of bisimilarity and of behavioural
equivalence, which is however uniform over all systems of the given type.

The classical approach can be rephrased as a special case of coalgebraic coin-
duction, by the observation that any preorder, and thus in particular any complete
lattice, forms a category. Post-fixed points in the lattice correspond to coalgebras in
the associated category, and a greatest fixed point corresponds to a final coalgebra.
In this sense, coinductive predicates on a given system are themselves coalgebras,
which live in a category of predicates.

To define coinductive predicates in this way as coalgebras in a category of
predicates, we need a way of speaking about properties or predicates on systems.
Such a structure of predicates can be given by the categorical notion of fibrations.
As observed by Hermida and Jacobs [HJ98] and further developed by Hasuo et
al. [HCKJ13], fibrations provide the basic infrastructure to define coinductive pred-
icates on coalgebras systematically and uniformly, in terms of a lifting of the functor
whose coalgebras are the systems of interest to a category of predicates.

1.3 Enhanced coinduction

The aim of this thesis is to develop methods that simplify and enhance coinductive
reasoning, with coalgebra as the framework of choice to obtain generally applicable
techniques. Our results are divided into two parts: the first part concerns the

1.3. Enhanced coinduction 13

coinductive proof method, and the second part concerns coinductive definition
techniques.

1.3.1 Coinductive proofs

To prove that two processes are bisimilar, it suffices to construct a bisimulation.
However, this can be rather difficult in concrete instances. Already in the early
days of bisimulations, Milner proposed a simplified method of proving bisimilarity,
which he called bisimulation up to bisimilarity [Mil83]. This idea was further devel-
oped in the work of Sangiorgi [San98], who proposed several new enhancements
of the bisimulation proof method, including bisimulation up to context, a powerful
technique for reasoning about systems with algebraic structure, such as models of
process calculi. The gains of using up-to techniques to prove bisimilarity can be
spectacular, sometimes allowing to use proofs based on a singleton rather than an
infinite set. Indeed, up-to techniques have been extensively applied and are by
now standard in concurrency theory [PS12].

Enhancements of the bisimulation proof method are interesting not only in con-
currency theory. As an example, the coalgebraic study of automata [Rut98a] led to
a general view on determinization constructions [SBBR10] which has been com-
bined with up-to techniques, culminating in a novel, efficient algorithm for lan-
guage equivalence of non-deterministic automata [BP13, BP15], a problem that is
long known and has been studied extensively. Other examples of up-to techniques
outside concurrency theory are their use in stream calculus [Rut05, NR11], theo-
rem proving [EHB13], and decidability of weighted language equivalence [Win15].
Further, in Chapter 2 of this thesis we show how to apply up-to techniques for de-
terministic automata to reason about calculi on languages.

In this thesis, we introduce a coalgebraic framework of up-to techniques for
coinductive predicates, generalizing the enhancements of the proof method for
bisimilarity of processes to a wide range of coinductive predicates and a wide
range of state-based systems. We prove the soundness of enhancements such
as bisimulation up to context, bisimulation up to transitivity and bisimulation
up to bisimilarity, at this abstract level. Building on the work of Pous and San-
giorgi [San98, Pou07, PS12], we obtain a modular framework in which up-to tech-
niques can safely be combined to obtain new sound enhancements. To cover not
only bisimilarity but also other coinductive predicates, we base our approach on
functor liftings in the setting of a fibration, as pioneered by Hermida and Jacobs.
We show how to instantiate these results to obtain enhanced proof principles for
bisimilarity of weighted automata, streams and deterministic automata, and also
for other coinductive predicates such as divergence of processes, language inclu-
sion of weighted automata and similarity of processes.

1.3.2 Coinductive definitions

Coalgebras provide the means for studying the behaviour of state-based systems,
and to define and reason about operations on these systems. They yield a natu-

14 Chapter 1. Introduction

ral setting to define the operational semantics of languages and calculi for a wide
range of computational models. In this context, the structure or syntax of a lan-
guage is modelled by algebras, whereas the observable behaviour is modelled by
coalgebras [RT93]. The semantics of the operators of a language is specified in
terms of the interplay between algebra and coalgebra.

As an example, the terms of a typical process calculus, such as CCS, form a
(free) algebra, and the behaviour is given in terms of transition systems. This
behaviour is defined by inductively turning the terms into a coalgebra, according to
the specification of each of the operators. Often, such specifications are presented
in the language of structural operational semantics [AFV01]. For example, the
parallel composition operator in CCS is defined by the following rules:

x
a−→ x′

x|y a−→ x′|y
y
a−→ y′

x|y a−→ x|y′
x

a−→ x′ y
a−→ y′

x|y τ−→ x′|y′
(1.1)

The first rule states that if a process x makes an a-transition to x′ then the parallel
composition x|y with any process y makes an a-transition to x′|y, and the second
rule is its converse. The third rule states how processes x and y can synchronize.
The above rules specify how the behaviour of the parallel composition operation
is determined from the behaviour of its arguments. Such rules define a coalgebra
(transition system) on terms, by induction. The semantics of the operator then
arises coinductively, as the homomorphism from this coalgebra on terms into the
final coalgebra.

It was observed by Turi and Plotkin that the interplay between algebra and
coalgebra can be captured elegantly and systematically through the categorical
concept of a distributive law [TP97]. In particular, they showed that distributive
laws can be presented by abstract GSOS specifications, providing a specification for-
mat for languages and calculi which is parametric in the type of behaviour and
the type of syntax, in which every specification induces a compositional semantics.
As a special case, this can be instantiated to the celebrated GSOS format, which
is a particular variant of structural operational semantics [TP97, Bar04, BIM95].
However, abstract GSOS has also been instantiated to obtain formats for proba-
bilistic systems [Bar04], weighted systems [Kli09], streams [HKR14, Kli11], and
more [Kli11]. Moreover, distributive laws have been used to devise coalgebraic
determinization procedures [SBBR10, JSS12, Bar04], for solving recursive equa-
tions (e.g., [Jac06b, MMS13]), and they play a crucial role in the enhancements of
coinductive proof methods proposed in this thesis.

In the second part of this thesis, we integrate distributive laws with equations.
We extend Turi and Plotkin’s framework with recursive assignment rules. This
allows, for instance, to define the replication operator !x in CCS by the rule

!x|x a−→ t

!x
a−→ t

(1.2)

which does not fit the GSOS format, since a GSOS rule can not have complex terms
such as !x|x in the premise. Subsequently we show that, using assignment rules, we

1.4. Related work 15

can express the syntactic format for structural congruences proposed by Mousavi
and Reniers [MR05]. Structural congruences are a method to combine transition
system specifications with equations. We thus integrate (abstract) GSOS specifica-
tions with equations, which allows, for instance, to define the replication operator
!x in CCS by the equation !x = !x|x, and to replace the two symmetric rules in (1.1)
by a single rule and the equation x|y = y|x. Our main result is that the interpre-
tation of specifications extended with assignment rules (or equations in Mousavi
and Reniers’ format) is well-behaved, in the sense that bisimilarity is a congruence
and that bisimulation up-to techniques are sound. We thus provide a systematic
account of combining distributive laws with structural congruences, which was
mentioned as an open problem by Bartels [Bar04, page 166] and Klin [Kli07].

While distributive laws can be useful tools to understand the interaction be-
tween algebra and coalgebra, they can also be rather hard to describe. Typically,
one tries to apply a general method to obtain them, for example by presenting
them using abstract GSOS specifications, or using pointwise liftings of the functor
that models the type of behaviour [Jac06b, SBBR13]. However, these approaches
do not apply if the algebraic structure is modelled by a monad that is not free and
the semantics of interest does not arise from a pointwise lifting. This is the case,
for instance, in the coalgebraic presentation of context-free grammars proposed
in [WBR13].

We show how to present distributive laws for a monad with an equational pre-
sentation as the quotient of a distributive law for the underlying free monad, which
can in turn be conveniently described using an abstract GSOS specification. The
quotient exists under the condition that the original distributive law preserves the
equations of the monad, which essentially means that the congruences generated
by the equations are bisimulations. We demonstrate our approach by presenting
distributive laws for operations on streams and for context-free grammars in a sim-
ple manner.

1.4 Related work

The use of up-to techniques to enhance the bisimulation proof method for tran-
sition systems goes back to Milner [Mil83, Mil89]. The first systematic study of
soundness of up-to techniques for bisimilarity between processes is due to San-
giorgi [San98]. Sangiorgi’s approach to modularly construct sound up-to tech-
niques was then generalized to the setting of coinduction in complete lattices by
Pous [Pou07, PS12].

At the coalgebraic level, bisimulation up-to techniques were first studied by
Lenisa [Len99, LPW00] and by Bartels [Bar04]. They proved the soundness of the
specific technique of bisimulation up to context, under certain hypotheses. Both
Lenisa and Bartels explicitly mention techniques such as bisimulation up to bisim-
ilarity as an open problem, and Bartels conjectures that the combination of up-to
techniques can be achieved by finding a suitable abstract framework and an asso-
ciated generalization of Sangiorgi’s methods to combine sound up-to techniques

16 Chapter 1. Introduction

(see [Bar04, page 166-167],[Len99, page 18]). In this thesis, we provide precisely
such a framework, which covers a wide range of enhancements including up-to
bisimilarity, but also many other techniques, and their combinations.

Another coalgebraic approach is due to Luo [Luo06], who adapts Sangiorgi’s
framework of up-to techniques to prove soundness of several up-to techniques.
Further, [ZLL+10] introduces bisimulation up-to where the notion of bisimulation
is based on a specification language for polynomial functors. All of the previous
works on up-to techniques for coalgebras focus on bisimulations; in contrast, the
results in this thesis are developed for general coinductive predicates.

Coinductive definition principles through bialgebraic methods have been an
active area of research since the work of Turi and Plotkin. The combination of
recursive constructs with bialgebraic semantics was suggested by Plotkin [Plo01]
and developed by Klin [Kli04], based on bialgebras in an order-enriched setting.
Instead, we only assume an order on the behaviour functor of interest, which al-
lows us to combine abstract GSOS specifications with recursive equations. This
combination is the basis of our concrete approach to structural congruences in
the bialgebraic setting. Our results on structural congruences build on the work
of Mousavi and Reniers [MR05]. While structural congruences are standard and
widely used in concurrency theory, Mousavi and Reniers provided the only system-
atic study of structural congruences so far.

The construction of distributive laws as quotients, which we propose in this the-
sis, yields an instance of a morphism of distributive laws in the sense of [Wat02].
Quotients of distributive laws are studied in [MM07], with a different aim: they
study distributive laws of one monad over another in order to compose these mon-
ads. Further, [LPW04] introduces several constructions on distributive laws, in-
cluding a certain kind of quotient. Our main new contributions are an associated
proof principle that ensures that a quotient distributive law exists, a self-contained
presentation of all the necessary ingredients, and the application to stream calculus
and the coalgebraic approach to context-free languages proposed in [WBR13].

1.5 Outline

In Chapter 2 we prove the soundness of up-to techniques for language equivalence
and inclusion, and explain how to use these techniques through a wide range of
examples. This chapter requires little background knowledge, and it serves as a
self-contained introduction to bisimulation and bisimulation up-to. Chapter 2 is
based on:

• [RBR13b] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Coinductive
proof techniques for language equivalence. LATA 2013.

• [RBR15] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Proving lan-
guage inclusion and equivalence by coinduction. To appear in Information
and Computation, 2015. (Extended version of [RBR13b].)

1.5. Outline 17

Chapter 3 contains preliminaries on coalgebras, coinduction, fibrations, alge-
bras and distributive laws, that form the technical background of the subsequent
chapters. It is not necessary to understand all of the preliminaries to proceed with
the other chapters. In particular, much of the development of Chapter 4 can be
understood without knowledge of distributive laws, and the background material
on fibrations is only required in Chapter 5.

In Chapter 4 we introduce bisimulation up-to techniques for coalgebras. We
prove the soundness of techniques such as up-to-context, up-to-bisimilarity and
up-to-equivalence, and their combinations. To illustrate this theory, we show how
to use bisimulation up-to techniques to reason about streams, weighted automata
and (non)deterministic automata. The soundness of bisimulation up-to techniques
for deterministic automata of Chapter 2 is a special case. Chapter 4 is based on:

• [RBB+15] Jurriaan Rot, Filippo Bonchi, Marcello Bonsangue, Damien Pous,
Jan Rutten, and Alexandra Silva. Enhanced coalgebraic bisimulation. To
appear in Mathematical Structures in Computer Science, 2015.

To a smaller extent, Chapter 4 is based on the predecessor of the above paper:

• [RBR13a] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Coalgebraic
bisimulation-up-to. SOFSEM 2013.

In Chapter 5 we generalize the results of Chapter 4 to arbitrary coinductive
predicates, based on a fibrational approach to coinductive predicates. Our results
in this chapter provide a flexible approach to defining general up-to techniques
for coinductive predicates and proving their soundness in a modular way. We in-
stantiate this abstract framework to prove the soundness of up-to techniques for
similarity of transition systems, language inclusion of weighted automata, and di-
vergence of processes. Chapter 5 is based on:

• [BPPR14] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot.
Coinduction up-to in a fibrational setting. CSL-LICS 2014.

Chapter 6 integrates Turi and Plotkin’s approach to abstract GSOS with equa-
tions. We show how to interpret recursive equations in this context, and prove
that they can be encoded by constructing new specifications. We use this to show
how abstract GSOS can be combined with structural congruences, for a particular
format of equations. Chapter 6 is based on:

• [RB14] Jurriaan Rot and Marcello Bonsangue. Combining bialgebraic seman-
tics and equations. FoSSaCS 2014.

Further, Chapter 6 is based on an extended version [RB15] which is currently under
review.

In Chapter 7 we study distributive laws of monads over functors. We show how
to present such distributive laws as quotients of distributive laws involving a free
monad, which can in turn be given more easily through abstract GSOS specifica-
tions. Chapter 7 is based on:

18 Chapter 1. Introduction

• [BHKR13] Marcello Bonsangue, Helle Hvid Hansen, Alexander Kurz, and
Jurriaan Rot. Presenting distributive laws. CALCO 2013.

• [BHKR15] Marcello Bonsangue, Helle Hvid Hansen, Alexander Kurz, and
Jurriaan Rot. Presenting Distributive Laws. Logical Methods in Computer
Science, 2015.

The papers [BHKR13, BHKR15, BPPR14] are a joint effort between the authors.
For the other papers mentioned above [RBR13b, RBR15, RBB+15, RBR13a, RB14],
the author of this thesis is responsible for the main ideas, technical development
and most of the writing.

Chapter 2

Coinduction for languages

The set of all languages over a given alphabet can be turned into an (infinite)
deterministic automaton. The proof principle of coinduction asserts that two lan-
guages are equal if they are bisimilar in this automaton. Thus, to show equality
of languages it suffices to construct a suitable bisimulation. Bisimilarity and coin-
duction are the basis of a practical proof method for language equality [Rut98a],
which has, for example, been used in effective procedures for deciding language
equivalence of regular expressions (e.g., [KN12, Rut98a, LGCR09, CS11]).

In the current chapter, we enhance this coinductive proof method using up-to
techniques. These techniques allow to prove bisimilarity, and thus language equal-
ity, by means of bisimulations up-to, which are often smaller and easier to con-
struct than actual bisimulations. We show how to apply up-to techniques through
a number of examples, including new proofs of classical results such as Arden’s
rule [HU79].

The up-to techniques introduced in this chapter are particularly suitable for
reasoning about operations and calculi on languages. To achieve a general picture
of sound up-to techniques, we consider behavioural differential equations [Rut03],
which give a syntactic format for specifying operations in terms of language deriva-
tives. We show that bisimulation up-to can be used for reasoning about any opera-
tion defined in this format, and use this to prove properties of the shuffle operator
and of languages defined by Boolean grammars.

Deterministic automata and their notion of bisimulation are instances of more
general concepts from the theory of coalgebras. Indeed, the current exposition is
based on the coalgebraic treatment of automata that was initiated in [Rut98a], and
the main results of this chapter can be obtained by instantiating the abstract coalge-
braic theory of coinduction up-to developed in subsequent chapters of this thesis.
Thereby, the current chapter provides a concrete, self-contained introduction to
coinduction and up-to techniques, that requires little background knowledge.

Outline. The next section contains preliminaries on languages and bisimulations.
In Section 2.2, we motivate and introduce bisimulation up-to for regular opera-

19

20 Chapter 2. Coinduction for languages

tions. Then in Section 2.3, this is generalized to soundness results for operations
given by behavioural differential equations, and applied to several other examples.
Further, we give an equivalent, semantic characterization of the class of operations
that are definable by behavioural differential equations. In Section 2.4, we treat
simulation up-to, to reason about language inclusion. In Section 2.5, we discuss
related work.

2.1 Bisimulations and coinduction

Throughout this chapter we assume a fixed alphabet A. The set of words is denoted
by A∗, the empty word by ε and the concatenation of words w and v by wv. We let
2 = {0, 1} be the set of Boolean values, where 0 ≤ 1. A language is a set of words,
which we represent as a function from A∗ to 2; the set of languages is denoted
by 2A

∗
. We abuse notation and use 0 and 1 to denote the empty language and the

language containing only the empty word respectively. Further we let any alphabet
letter a ∈ A denote the language that contains only the letter itself.

A (deterministic) automaton (DA) over A is a triple (X, o, t) where X is a set of
states, o : X → 2 is an output function, and t : X → XA is a transition function. A
state x ∈ X is final or accepting if o(x) = 1. We do not require X to be finite and
fix no initial states.

The classical definition of bisimulation applies to labelled transition systems,
which, in contrast to deterministic automata, do not have output and may feature
non-deterministic branching behaviour1.

Definition 2.1.1. Let (X, o, t) be a deterministic automaton. A relation R ⊆ X×X
is a bisimulation if for any (x, y) ∈ R:

1. o(x) = o(y), and

2. for all a ∈ A : (t(x)(a), t(y)(a)) ∈ R.

The largest bisimulation is denoted by ∼ and called bisimilarity; if x ∼ y then we
say x is bisimilar to y.

We will instantiate the notion of bisimulation to a special deterministic au-
tomaton, whose state space is given by the set of languages 2A

∗
. The output of a

language L is simply L(ε), that is, a language is an accepting state precisely if it
contains the empty word. For any a ∈ A, the a-transition from a language L is
given by language derivative La, defined as follows for all w ∈ A∗:

La(w) = L(aw) .

1Bisimulation-like techniques have been used earlier in the setting of automata. In fact, the stan-
dard reference [Par81] introduces bisimulations for automata rather than transition systems, and Theo-
rem 2.1.2 appears already there. For a historical account of bisimulation and coinduction, see [San12b].

2.1. Bisimulations and coinduction 21

Spelling out Definition 2.1.1, a relation R on languages is a bisimulation on this
automaton if for any (L,K) ∈ R:

L(ε) = K(ε) and for all a ∈ A : (La,Ka) ∈ R .

It turns out that bisimilarity of languages is a characterization of language equality.
This is called the coinductive proof principle, or simply coinduction [Rut98a]. A
more general account of coinduction is given in the next chapter.

Theorem 2.1.2 (Coinduction). For any two languages L,K:

L ∼ K iff L = K .

Proof. For the implication from right to left, one shows that the diagonal relation
{(L,L) | L ∈ 2A

∗} is a bisimulation. For the converse, one can prove that for any
languages L,K and any word w: if L ∼ K then L(w) = K(w), by (structural)
induction on w.

The above coinduction principle is a concrete proof method: to show that two
languages L,K are equal, it suffices to construct a bisimulation containing (L,K).

2.1.1 Regular operations

Consider the regular operations of union L+K, concatenation L ·K (often written
as LK) and Kleene star L∗. These are defined, for all w, as usual: (L + K)(w) =
L(w) ∨K(w), (L ·K)(w) = 1 iff there are v, u such that w = vu and L(v) = 1 =
K(u), and L∗ =

∑
i≥0 L

i, where L0 = 1 and Li+1 = L ·Li. In order to prove equiv-
alence of expressions involving the above operations, we may use bisimulations,
but this requires a characterization of the output (acceptance of the empty word)
and the derivatives of operations in terms of their arguments. Such a characteri-
zation was given for regular expressions by Brzozowski [Brz64]; we formulate this
in terms of languages (see, e.g., [Con71, page 41]).

Lemma 2.1.3. For any two languages L,K and for any a, b ∈ A:

0(ε) = 0 0a = 0
1(ε) = 1 1a = 0

b(ε) = 0 ba =

{
1 if b = a

0 otherwise
(L+K)(ε) = L(ε) ∨K(ε) (L+K)a = La +Ka

(L ·K)(ε) = L(ε) ∧K(ε) (L ·K)a = La ·K + L(ε) ·Ka

L∗(ε) = 1 (L∗)a = La · L∗

Remark 2.1.4. This characterization in terms of output and derivative can equiva-
lently be taken as the definition of the operations. This is achieved by constructing
a deterministic automaton on the state space of expressions over languages. Such
definition techniques, which are standard in the theory of coalgebras, are discussed
in more detail in Chapter 3.

22 Chapter 2. Coinduction for languages

Example 2.1.5. Let A = {a, b}. We prove that (a+ b)∗ = (a∗b∗)∗. To this end, we
start with the relation R = {((a+ b)∗, (a∗b∗)∗)} and try to show that it is a bisimu-
lation. So we must show that the outputs of (a+ b)∗ and (a∗b∗)∗ coincide, and that
their a-derivatives and their b-derivatives are related by R. Using Lemma 2.1.3,
we see that (a + b)∗(ε) = 1 = (a∗b∗)∗(ε). Moreover, again using Lemma 2.1.3, we
have ((a + b)∗)a = (a + b)a(a + b)∗ = (1 + 0)(a + b)∗ = (a + b)∗ and ((a∗b∗)∗)a =
(a∗b∗)a(a∗b∗)∗ = ((a∗)ab

∗ + a∗(ε) · (b∗)a)(a∗b∗)∗ = (a∗b∗ + 0)(a∗b∗)∗ = (a∗b∗)∗, so
the a-derivatives are again related (notice that apart from Lemma 2.1.3, we have
used some basic facts about union and concatenation). The b-derivative of (a+ b)∗

is (a + b)∗ itself; however, the b-derivative of (a∗b∗)∗ is b∗(a∗b∗)∗. But b∗(a∗b∗)∗

is equal to (a∗b∗)∗, so we are done. For an alternative proof that does not use the
latter equality, consider the relation R′ = R∪{((a+b)∗, b∗(a∗b∗)∗)}. As it turns out,
the pair ((a + b)∗, b∗(a∗b∗)∗) satisfies the necessary conditions as well, turning R′

into a bisimulation. We leave the details as an exercise for the reader, and conclude
(a+ b)∗ = (a∗b∗)∗ by Theorem 2.1.2.

Constructing a bisimulation (by hand) often follows the above pattern of us-
ing Lemma 2.1.3 to compute outputs and derivatives, extending the relation when
necessary, and showing that the outputs are equal and the derivatives related. In
the remainder of this chapter, we frequently use Lemma 2.1.3 without further ref-
erence to it.

If one restricts to regular languages, then the technique of constructing bisimu-
lations in this manner gives rise to an effective algorithm for checking equivalence
(cf. [Brz64, Con71, Rut98a]). However, the above coinductive proof method ap-
plies to equations over arbitrary languages, not only to regular ones, and in the
next sections we consider many such instances of equations.

2.2 Bisimulation up-to for regular operations

In this section, we introduce an enhancement of the bisimulation proof method for
equality of languages. We first illustrate the need for such an enhancement with a
few examples. Consider the property LL∗ + 1 = L∗. In order to prove this identity
coinductively, we may try to show that

R = {(LL∗ + 1, L∗) | L ∈ 2A
∗
}

is a bisimulation. Using Lemma 2.1.3, it is easy to see that (LL∗ + 1)(ε) = L∗(ε)
for any language L. Further, for any a ∈ A:

(LL∗ + 1)a = LaL
∗ + L(ε)LaL

∗ + 0 = LaL
∗ = (L∗)a

where the leftmost and rightmost equality are by Lemma 2.1.3, and in the second
step we use some standard identities. Now we have shown that the derivatives are
equal; this does not show that R is a bisimulation, since for that, the derivatives
need to be related by R. The solution, however, is straightforward. If we augment

2.2. Bisimulation up-to for regular operations 23

the relation R as follows:

R′ = R ∪ {(L,L) | L ∈ 2A
∗
}

then the derivatives of LL∗ + 1 and L∗ are related by R′; moreover, the diagonal
is easily seen to satisfy the properties of a bisimulation as well. This solves the
problem, but it is arguably somewhat inconvenient that additional work is required
to deal with derivatives that are already equal.

As another motivating example, we consider the relation

R = {(L∗L+ 1, L∗) | L ∈ 2A
∗
} .

The derivatives are (using Lemma 2.1.3):

(L∗L+ 1)a = LaL
∗L+ La + 0 = La(L∗L+ 1) and (L∗)a = LaL

∗

Clearly LaL∗ can be obtained from La(L∗L + 1) by replacing L∗L + 1 by L∗, and
indeed the latter two languages are related by R. However, since these derivatives
are not related directly by R, this argument does not show R to be a bisimulation.
Extending R to an actual bisimulation is possible but requires a bit of work that
one would rather skip.

To deal with examples such as the above in a more natural and easy way, we
introduce the notion of bisimulation up to congruence. This requires the definition
of congruence closure.

Definition 2.2.1. For a relation R ⊆ 2A
∗ × 2A

∗
, define the congruence closure of R

(with respect to +, · and ∗) as the least relation ≡ satisfying the following rules:

LRK

L ≡ K L ≡ L
L ≡ K
K ≡ L

L ≡ K K ≡M
L ≡M

L1 ≡ K1 L2 ≡ K2

L1 + L2 ≡ K1 +K2

L1 ≡ K1 L2 ≡ K2

L1 · L2 ≡ K1 ·K2

L ≡ K
L∗ ≡ K∗

In the sequel, we denote the congruence closure of a given relation R on languages
by ≡R, or ≡ if R is clear from the context.

The first rule ensures that R ⊆ ≡R. The three rules on the right in the first row
turn ≡R into an equivalence relation. The three rules on the second row ensure
that ≡R is closed under the operations under consideration, which in particular
means that ≡R relates languages obtained by (syntactic) substitution of languages
related by R. For example, if (L∗L+1, L∗) ∈ R, then we can derive from the above
rules that La(L∗L+ 1) ≡R LaL∗.

Definition 2.2.2. A relation R ⊆ 2A
∗ × 2A

∗
is a bisimulation up to congruence, or

simply a bisimulation up-to, if for any pair (L,K) ∈ R:

1. L(ε) = K(ε), and

2. for all a ∈ A : La ≡R Ka.

24 Chapter 2. Coinduction for languages

In a bisimulation up to congruence, the derivatives can be related by the con-
gruence ≡R rather than the relation R itself, and therefore, bisimulations up-to
may be easier to construct than bisimulations. Indeed, to prove that R is a bisimu-
lation up-to, the derivatives can be related by familiar equational reasoning.

A bisimulation up-to is, in general, not a bisimulation. However, as we show
below, it represents one, in the following sense: if R is a bisimulation up-to, then
≡R is a bisimulation.

Theorem 2.2.3. If R is a bisimulation up to congruence then for any (L,K) ∈ R, we
have L = K.

Proof. Let ≡ be the congruence closure of R. We show that any pair (L,K) in ≡
satisfies the properties

1. L(ε) = K(ε) and

2. for any a ∈ A: La ≡ Ka

of a bisimulation, by rule induction on (L,K) ∈ ≡. This amounts to showing that
≡ is closed under the inference rules of Definition 2.2.2. For the base cases:

1. for the pairs contained in R, the conditions are satisfied by the assumption
that R is a bisimulation up-to;

2. the case L ≡ L is trivial.

Now assume languages L,K,M,N such that L ≡ K, M ≡ N , L(ε) = K(ε),
M(ε) = N(ε) and for all a ∈ A: La ≡ Ka and Ma ≡ Na. We need to prove that
(L+M,K +N), (LM,KN), (L∗,K∗), (K,L) and (L,N) (if K = M) again satisfy
the properties of a bisimulation, i.e., (L + M)(ε) = (K + N)(ε) and for all a ∈ A:
(L + M)a ≡ (K + N)a, and similarly for the other operations. We treat the case
of union: (L + M)(ε) = L(ε) ∨M(ε) = K(ε) ∨ N(ε) = (K + N)(ε); moreover
by assumption and closure of ≡ under + we have La + Ma ≡ Ka + Na, and so
(L+M)a = La +Ma ≡ Ka +Na = (K +N)a.

Concatenation and Kleene star are treated in a similar manner, and symmetry
and transitivity are not difficult either. Thus, by induction, ≡ is a bisimulation, so
by Theorem 2.1.2 we have L = K for any L ≡ K and for any (L,K) ∈ R, in
particular.

Any bisimulation is also a bisimulation up-to, so Theorem 2.2.3 is a generaliza-
tion of Theorem 2.1.2 for the case of languages. Consequently, its converse holds
as well.

We proceed with a number of proofs based on bisimulation up-to.

Example 2.2.4. Recall the relation R = {(L∗L + 1, L∗) | L ∈ 2A
∗} from the

beginning of this section. As we have seen, the a-derivatives are La(L∗L + 1) and
LaL

∗, which are not related by R; however they are related by ≡R. So R is a
bisimulation up-to, and consequently L∗L+ 1 = L∗, by Theorem 2.2.3. Moreover,
the relation {(LL∗ + 1, L∗) | L ∈ 2A

∗} from the beginning of this section is a
bisimulation up-to as well; there, the derivatives are equal and thus related by ≡R.

2.2. Bisimulation up-to for regular operations 25

Example 2.2.5. In order to prove M + KL ⊆ L ⇒ K∗M ⊆ L, we use that
K∗M ⊆ L if and only if K∗M + L = L, and try to prove that the relation

R = {(K∗M + L,L) |M +KL ⊆ L; L,K,M ∈ 2A
∗
}

is a bisimulation up-to. Let L,K,M be such languages and note that M + KL +
L = L. Since (M + KL + L)(ε) = L(ε) it follows that (M + L)(ε) = L(ε), so
(K∗M + L)(ε) = L(ε). For any alphabet letter a we have

(K∗M + L)a = KaK
∗M +Ma + La

= KaK
∗M +Ma + (M +KL+ L)a

= KaK
∗M +Ma +Ma +KaL+K(ε)La + La

= Ka(K∗M + L) +Ma +K(ε)La + La

≡R KaL+Ma +K(ε)La + La

= (M +KL+ L)a

= La .

In conclusion, R is a bisimulation up-to, proving M +KL ⊆ L⇒ K∗M + L = L.

The above approach of dealing with language inclusion by reducing it to equal-
ity is, in general, not the most efficient one. In Section 2.4, we introduce simulation
up-to which allows to deal with inequality more directly, and reprove the above ex-
ample in a shorter way.

Example 2.2.6. Arden’s rule, in a special case2, states that if L = KL+M for some
languages L,K and M , and K does not contain the empty word, then L = K∗M .
In order to prove its validity coinductively, let L,K,M be languages such that
K(ε) = 0 and L = KL + M , and let R = {(L,K∗M)}. Using that K(ε) = 0, we
have L(ε) = (KL+M)(ε) = (K(ε) ∧L(ε)) ∨M(ε) = (0 ∧L(ε)) ∨M(ε) = M(ε) =
1 ∧M(ε) = K∗(ε) ∧M(ε) = K∗M(ε). Further,

La = (KL+M)a = KaL+K(ε) · La +Ma

= KaL+Ma ≡R KaK
∗M +Ma = (K∗M)a

for any a ∈ A. So R is a bisimulation up-to, proving Arden’s rule.

While Arden’s rule is not extremely difficult to prove without using bisimula-
tions, the textbook proofs are longer and arguably more involved than the above
proof, which is not much more than taking derivatives combined with a bit of
algebraic reasoning, and does not require much ingenuity. Nevertheless, this coin-
ductive proof is completely precise. Giving a formal proof without using these
methods seems non-trivial; see [FS12] for the discussion of a proof within the
theorem prover Isabelle.

2We consider a more general version of Arden’s rule in Section 2.4.

26 Chapter 2. Coinduction for languages

In fact, [Rut98a] already contains a coinductive proof of Arden’s rule. However,
this is based on a bisimulation, in contrast to our proof, which is based on a bisim-
ulation up-to. Indeed, in [Rut98a] the infinite relation {(NL + O,NK∗M + O) |
N,O ∈ 2A

∗} is used, requiring more work in checking the bisimulation conditions.
In that case, one essentially closes the relation {(L,K∗M)} under (certain) con-
texts manually—this happens in a general and systematic fashion in the proof of
Theorem 2.2.3.

Example 2.2.7. We prove that for any language L: LL = 1⇒ L = 1 (this property
was used in [Koz90] to show that the universal Horn theory of Kleene algebra does
not coincide with that of the regular sets). Assume LL = 1 and let R = {(L, 1)}.
Since (LL)(ε) = 1(ε) = 1 also L(ε) = 1 = 1(ε). We show that the derivatives
of L and 1 are equal, turning R into a bisimulation up-to. First, for any a ∈ A:
LaL + La = LaL + L(ε)La = (LL)a = 1a = 0. Now, one easily proves that
this implies La = 0 (for example by showing that {(K, 0) | L + K = 0} is a
bisimulation). Thus La = 0 = 1a, so La ≡R 1a.

Example 2.2.8. We prove that LL = L ⇒ L∗ = 1 + L, by establishing a bisimu-
lation up-to (in fact, this example can also easily be proved by induction). To this
end, let L be a language with LL = L and consider the relation R = {(L∗, 1 +L)}.
Indeed, L∗(ε) = 1 = (1 +L)(ε), and for any a ∈ A: (L∗)a = LaL

∗ ≡R La(1 +L) =
La + LaL = La + L(ε)La + LaL = La + (LL)a = La + La = La.

The last example of this section concerns context-free languages. These can
be expressed in terms of language equations [GR62]. For example, the language
{anbn | n ∈ N} is the unique language L such that L = aLb+ 1.

Example 2.2.9. Let L,K,M be languages such that L = aKMb+1, K = aMLb+1
and M = aLKb + 1. Without thinking of what possible concrete descriptions
of L,K and M can be, we show that L = K = M . To this end, let R =
{(L,K), (K,M)}. Obviously L(ε) = K(ε) and K(ε) = M(ε). Moreover for any
alphabet letter b other than a, we have Lb = 0 = Kb and Kb = 0 = Mb. For
the a-derivatives we have La = KMb ≡R MKb ≡R MLb = Ka and similarly for
(M,K); so R is a bisimulation up-to, proving that L = K = M .

2.3 Sound operations for bisimulation up-to

In the previous sections, we considered the regular operations on languages, and
how their coinductive characterization can be used to prove equalities using bisim-
ulations up-to. Next, we introduce a general syntactic format of operations on lan-
guages, and prove that a corresponding notion of bisimulation up-to is sound for
any operation that can be characterized within this format. This format consists of
a well-defined class of behavioural differential equations (BDEs) [Rut98a, Rut03].
More precisely, it is a variant of the stream GSOS format given in [HKR14] for
stream systems. In fact, our format is a special case of abstract GSOS [TP97], a

2.3. Sound operations for bisimulation up-to 27

categorical specification format at the level of coalgebras. In the following chap-
ters, we recall abstract GSOS and prove soundness results for up-to techniques at
this level, to obtain proof techniques not only for deterministic automata but for
arbitrary coalgebras.

After introducing the general soundness results, we show several examples in-
volving language equations with Boolean connectives, and the shuffle product.
This section is concluded with a discussion of causal functions, which turn out to
give a semantic characterization of operations that can be defined by behavioural
differential equations [KNR11, HKR14].

A signature Σ is a countable set of operator names σ ∈ Σ with associated arities3

|σ| ∈ N. A language interpretation of a signature Σ is a set of functions

{σ̂ : (2A
∗
)|σ| → 2A

∗
}σ∈Σ .

In the sequel, every language interpretation for a signature is of the above type (on
languages), and so we simply speak about an interpretation and write {σ̂}σ∈Σ.

Definition 2.3.1. For a relation R ⊆ 2A
∗ × 2A

∗
, define the congruence closure ≡Σ

R

of R w.r.t. an interpretation {σ̂}σ∈Σ as the least relation ≡ satisfying the following
rules:

LRK

L ≡ K L ≡ L
L ≡ K
K ≡ L

L ≡ K K ≡M
L ≡M

L1 ≡ K1 . . . Ln ≡ Kn

σ̂(L1, . . . , Ln) ≡ σ̂(K1, . . . ,Kn)
for each σ ∈ Σ, n = |σ|

R is a bisimulation up-to (w.r.t. {σ̂}σ∈Σ), if for any (L,K) ∈ R:

1. L(ε) = K(ε), and

2. for all a ∈ A : La ≡Σ
R Ka.

Bisimulation up-to for the regular operators (Definition 2.2.1) is a special case
of the above definition. While Theorem 2.2.3 asserts that bisimulation up-to is a
sound proof technique in the case of union, concatenation and Kleene star, this is
not the case in general for other operations. This is illustrated by the following
example, adapted from [PS12].

Example 2.3.2. Assume for simplicity a singleton alphabet {a}. Consider the sig-
nature that only contains a unary operator h, whose interpretation is defined as
follows:

ĥ(L) =

{
0 if L = 0

1 otherwise

Now notice that 0a = 0 = ĥ(0), aa = 1 = ĥ(a), and 0(ε) = 0 = a(ε). Consequently
the relation R = {(0, a)} is a bisimulation up-to w.r.t. {ĥ}, whereas 0 6= a, so
bisimulation up-to with respect to {ĥ} is not sound.

3For notational convenience we assume that all operations have finite arity, but all the results hold
for non-finitary operations—such as the infinite sum—as well.

28 Chapter 2. Coinduction for languages

We introduce a condition that guarantees soundness, based on characterizing
the operations in terms of BDEs [Rut03]. Informally, this means that one specifies
the output of an operation in terms of the outputs of the arguments, and the deriva-
tives as an expression involving the arguments, their derivatives and their outputs.
The equations in Lemma 2.1.3 form an example. Indeed, behavioural differential
equations are best explained through concrete examples. To prove our soundness
theorem, however, we need a precise characterization.

Define the set of terms Σ∗(V) over a signature Σ and a set of variables V by the
grammar

t ::= v | σ(t1, . . . , tn)

where v ranges over V , σ ranges over Σ and n = |σ|. Given an interpretation
{σ̂}σ∈Σ we define a function

I : Σ∗(2A
∗
)→ 2A

∗

by induction: I(L) = L and I(σ(t1, . . . , tn)) = σ̂(I(t1), . . . , I(tn)). Substitution in t
of a term u for a variable x is denoted by t[x := u].

Definition 2.3.3. A (syntactic) behavioural differential equation (BDE) over a sig-
nature Σ for an operator σ ∈ Σ of arity n consists of a pair (o, d) of functions of the
form

o : 2n → 2 and d : A→ Σ∗(Vn)

where Vn is a set consisting of variables

• x1, . . . , xn,

• xε1, . . . , xεn and

• for each a ∈ A and each i ≤ n a variable xai ,

all of which are pairwise distinct.

The function o specifies the output of the operation given the output of the ar-
guments, and the function d specifies, for each alphabet letter, the derivative. This
derivative is given as a term; intuitively a variable xi represents the i-th argument
of the operation, a variable xεi represents its output, and a variable xai represents
the a-derivative of the i-th argument. For instance, the equations for language
concatenation in Lemma 2.1.3 would be presented as a behavioural differential
equation (o, d), where o : 2× 2→ 2 is conjunction, and d(a) = xa1 · x2 + xε1 · xa2 for
all a ∈ A.

To formalize the intuition that syntactic behavioural differential equations de-
fine actual equations on languages, we define for each n a function

ρn : Σ∗(Vn)→ ((2A
∗
)n → Σ∗(2A

∗
))

ρn(t)(L1, . . . , Ln) = t[xi := Li]i≤n[xai := (Li)a]i≤n,a∈A[xεi := Li(ε)]i≤n
(2.1)

2.3. Sound operations for bisimulation up-to 29

which substitutes each xi by Li, xai by the a-derivative (Li)a and xεi by L(ε). Now,
given a function σ̂ : (2A

∗
) → 2A

∗
, a BDE (o, d) for σ defines an equation for each

a ∈ A:
σ̂(L1, . . . , Ln)a = I(ρn(d(a))(L1, . . . , Ln)) (2.2)

which states in a precise manner that the a-derivative of σ̂(L1, . . . , Ln) behaves
according to the syntactic presentation d(a). For instance, if σ̂ is language compo-
sition and d(a) = xa1 · x2 + xε1 · xa2 then the equation corresponds to

(L1 · L2)a = (L1)a · L2 + L1(ε) · (L2)a .

If, for an arbitrary operation σ̂ and BDE (o, d) the equation 2.2 holds and, moreover,
the output of σ̂(L1, . . . , Ln) is given by o applied to the output of its arguments,
then we say σ̂ is given by (o, d). This is captured formally by the following defini-
tion.

Definition 2.3.4. We say an interpretation {σ̂}σ∈Σ can be given by BDEs if for each
σ (with arity n) there is a BDE (o, d) over Σ such that for all languages L1, . . . , Ln:

σ̂(L1, . . . , Ln)(ε) = o(L1(ε), . . . , Ln(ε))

σ̂(L1, . . . , Ln)a = I(ρn(d(a))(L1, . . . , Ln))

where ρn is defined as in (2.1).

Remark 2.3.5. A behavioural differential equation (o, d) as in Definition 2.3.3 in-
duces for each set X a function

d′X : A→ (Xn × (XA)n × 2n → Σ∗(X))

which is natural in X, informally meaning that d′X(a) is defined uniformly over
every set X. This view allows for a neater formalization of presentation by BDEs
(Definition 2.3.4) with respect to operations on an arbitrary deterministic automa-
ton, which concides with Definition 2.3.4 for the case of the automaton of lan-
guages. Since we aim here to use as few technical notions as possible we postpone
such a treatment to Section 3.5. There, we recall a general approach to define and
study operations and calculi based on the theory of algebras and coalgebras, with
behavioural differential equations as a special case.

Lemma 2.1.3 states that the regular operations are captured by BDEs. So the
following theorem generalizes the proof principle of Theorem 2.2.3.

Theorem 2.3.6. If {σ̂}σ∈Σ can be given by BDEs, then for any relation R which is a
bisimulation up-to w.r.t. {σ̂}σ∈Σ: if (L,K) ∈ R then L = K.

Proof. Similarly to the proof of Theorem 2.2.3, we show that the congruence clo-
sure ≡ of R is a bisimulation, by proving by rule induction that

• L(ε) = K(ε) and

30 Chapter 2. Coinduction for languages

• for any a ∈ A: La ≡ Ka

holds for any (L,K) ∈ ≡. The base cases, i.e., if L = K or (L,K) ∈ R, are the
same as in Theorem 2.2.3.

The rules for symmetry and transitivity are not difficult. We treat the rule for an
operator σ ∈ Σ of arity n = |σ|. Let o and d be the functions from Definition 2.3.3
associated to σ which exist since {σ̂}σ∈Σ can be given by BDEs, and suppose we
have languages L1, . . . , Ln and K1, . . . ,Kn such that for all i:

Li ≡ Ki, Li(ε) = Ki(ε) and for all a ∈ A : (Li)a ≡ (Ki)a . (2.3)

Then we have

σ̂(L1, . . . , Ln)(ε) = o(L1(ε), . . . , Ln(ε))

= o(K1(ε), . . . ,Kn(ε)) = σ̂(K1, . . . ,Kn)(ε)

and for any a ∈ A:

σ̂(L1, . . . , Ln)a = I(ρn(d(a))(L1, . . . , Ln))

= I(d(a)[xi := Li]i≤n[xai := (Li)a]i≤n,a∈A[xεi := Li(ε)]i≤n)

≡ I(d(a)[xi := Ki]i≤n[xai := (Ki)a]i≤n,a∈A[xεi := Ki(ε)]i≤n)

= I(ρn(d(a))(K1, . . . ,Kn))

= σ̂(K1, . . . ,Kn)a

where the third step (relation by ≡) holds by the induction hypothesis (2.3).

Bisimulation up-to with respect to the function ĥ of Example 2.3.2 is not sound,
as we have seen. Indeed ĥ cannot be given by BDEs, since the output ĥ(L)(ε)
depends not only on L(ε) but on the entire language L.

2.3.1 Language equations with complement and intersection

Language complement L and intersection L ∧ K are defined as L(w) = ¬(L(w))
and (L ∧K)(w) = L(w) ∧K(w) respectively. Language equations including these
additional operations can be used to give semantics to conjunctive and Boolean
grammars, which extend context-free grammars with conjunction and comple-
ment [Okh13]. Complement and intersection have a known characterization in
terms of outputs and derivatives as well [Brz64]:

Lemma 2.3.7. For any two languages L,K and for any a ∈ A:

L(ε) = ¬(L(ε)) (L)a = (La)
(L ∧K)(ε) = L(ε) ∧K(ε) (L ∧K)a = La ∧Ka

The above characterization is in terms of BDEs, so by Theorem 2.3.6 we obtain
the soundness of bisimulation up-to.

2.3. Sound operations for bisimulation up-to 31

Example 2.3.8. There are unique languages L and K such that

L = aLa+ bLb+ a+ b+ 1 K = aKa+ bKb+ aA∗b+ bA∗a

L is the language of palindromes, i.e., words which are equal to their own reverse.
We claim that K is the language of all non-palindromes, and prove this formally
by showing that the relation R = {(L,K)} is a bisimulation up-to. The outputs are
easily seen to be equal: L(ε) = ¬(L(ε)) = ¬(1(ε)) = 0 = K(ε).

La = La = La+ 1 = La ∧ 1 = (La+A∗b+ 1) ∧ 1

≡R (Ka+A∗b+ 1) ∧ 1 = Ka ∧ 1 +A∗b ∧ 1 + 1 ∧ 1 = Ka+A∗b = Ka

In the fourth step, we unfold the complement La, the validity of which is itself a
nice exercise in bisimulation up-to. Further, the case of b-derivatives is of course
similar to the above. So R is a bisimulation up-to, proving that K indeed is the
complement of L.

2.3.2 Shuffle (closure)

The shuffle operation is defined on words w, v inductively as follows: w ⊗ ε =
ε⊗ w = w and aw ⊗ bv = a(w ⊗ bv) + b(aw ⊗ v) for any alphabet letters a, b. This
is extended to languages L,K as L ⊗K =

∑
w∈L,v∈K w ⊗ v. The shuffle closure is

defined as

L~ =

∞∑
i=0

L⊗i

where L⊗i is defined inductively by L⊗0 = 1 and L⊗i+1 = L ⊗ L⊗i . Notice that
the shuffle closure is very similar to the Kleene star; the difference is that here
shuffle is used instead of concatenation. Both shuffle and shuffle closure can be
characterized in terms of BDEs, as stated by the following lemma.

Lemma 2.3.9. For any two languages L,K and for any a, b ∈ A:

(L⊗K)(ε) = L(ε) ∧K(ε) (L⊗K)a = La ⊗K + L⊗Ka

L~(ε) = 1 (L~)a = La ⊗ L~

As an example of a proof using bisimulation up-to that involves the shuffle
operator, we treat the unfolding of the shuffle closure.

Example 2.3.10. Let L be any language; then L~ = L⊗ L~ + 1. To show this, let
R = {(L~, L ⊗ L~ + 1}. Then L~(ε) = 1 = (L ⊗ L~ + 1)(ε). Moreover for any
alphabet letter a:

(L~)a = La ⊗ L~ = La ⊗ (L~ + L~)

≡R La ⊗ (L~ + L⊗ L~ + 1) = La ⊗ (L~ + L⊗ L~)

= La ⊗ L~ + La ⊗ L⊗ L~ = La ⊗ L~ + L⊗ La ⊗ L~

= (L⊗ L~ + 1)a

using Lemma 2.3.9, Lemma 2.1.3 and some basic identities. Thus R is a bisimula-
tion up-to, proving L~ = L⊗ L~ + 1.

32 Chapter 2. Coinduction for languages

2.3.3 Causal functions

The format of BDEs defined in this section is a straightforward extension of the one
for streams, given in [KNR11, HKR14]. There, it is shown that functions that can
be given by BDEs are exactly those that are causal, and vice versa. This result can
be extended to the case of languages. As a consequence of Theorem 2.3.6, we then
obtain causality of functions as an equivalent, semantic condition for soundness of
up-to techniques. Here, we assume the alphabet A to be finite.

For any language L and any k ∈ N we define L|k ∈ 2A
∗

by

L|k(w) =

{
L(w) if |w| ≤ k
0 otherwise

where |w| is the length of a word w. Define the relation ≈k as follows:

L ≈k K iff L|k = K|k .

A function σ̂ : (2A
∗
)n → 2A

∗
is causal if for all languages L1, . . . , Ln, K1, . . . ,Kn

and for any k ∈ N:

L1 ≈k K1, . . . , Ln ≈k Kn implies σ̂(L1, . . . , Ln) ≈k σ̂(K1, . . . ,Kn) .

Causality means that equality up to length k is a congruence, for any k. In other
words, membership in σ̂(L1, . . . , Ln) of words of length less than k depends only
on the words in L1, . . . , Ln of length less than k. For example, the function ĥ from
Example 2.3.2 is not causal: whether or not ĥ(L) contains the empty word depends
on the entire language L.

Lemma 2.3.11. The set of all causal functions can be given by BDEs.

Proof. The core of the proof is that the derivatives of causal functions can be ex-
pressed in terms of causal functions again. We only show how this works for a
unary function σ̂ : 2A

∗ → 2A
∗
; the extension to other arities is straightforward. Let

A = {a1, . . . , al} be a finite alphabet. Consider, for an alphabet letter a ∈ A, the
function

σ̃a : (2A
∗
)l+1 → 2A

∗

defined as σ̃a(M,K1, . . . ,Kl) = (σ̂(M(ε)+a1K1 + . . .+alKl))a. Then σ̃a is causal,
and it follows that

σ̂(L)a = σ̃a(L(ε), La1 , . . . , Lal) .

We have thus expressed the derivative σ̂(L)a in terms of another causal function,
which takes the output and derivatives of L as arguments. Further, since σ̂ is
causal, the output σ̂(L)(ε) depends only on L(ε).

In order to prove the converse, that is, any operation that can be given by BDEs
is causal, we need the following.

2.3. Sound operations for bisimulation up-to 33

Lemma 2.3.12. Let k ∈ N. Suppose that for all σ̂ in some set {σ̂}σ∈Σ, and for all
languages L1, . . . , Ln,K1, . . . ,Kn (where n = |σ|) we have

L1 ≈k K1, . . . , Ln ≈k Kn implies σ̂(L1, . . . , Ln) ≈k σ̂(K1, . . . ,Kn) . (2.4)

Then for any list of variables x1, . . . , xm, any term t ∈ Σ∗(x1, . . . , xm) over operators
in Σ, and any languages L1, . . . , Lm:

L1 ≈k K1, . . . , Lm ≈k Km implies I(t[xi := Li]i≤m) ≈k I(t[xi := Ki]i≤m) .

Proof. Let L1, . . . , Ln,K1, . . . ,Kn be languages such that L1 ≈k K1, . . . , Lm ≈k
Km, and suppose that (2.4) holds. We prove that I(t[xi := Li]i≤m) ≈k I(t[xi :=
Ki]i≤m) by structural induction on t.

For the base case, if t is a variable xj then I(t[xi := Li]i≤m]) = Lj and I(t[xi :=
Ki]i≤m) = Kj , and we need to prove Lj ≈k Kj which trivially follows from our
assumption.

Suppose I(tj [xi := Li]i≤m) ≈k I(tj [xi := Ki]i≤m) for all j ≤ n. Then

I(σ(t1, . . . , tn)[xi := Li]i≤m)

= I(σ(t1[xi := Li]i≤m, . . . , tn[xi := Li]i≤m))

= σ̂(I(t1[xi := Li]i≤m), . . . , I(tn[xi := Li]i≤m))

≈k σ̂(I(t1[xi := Ki]i≤m), . . . , I(tn[xi := Ki]i≤m))

= I(σ(t1[xi := Ki]i≤m, . . . , tn[xi := Ki]i≤m))

= I(σ(t1, . . . , tn)[xi := Ki]i≤m)

where the second step (relating by ≈k) follows by the induction hypothesis and the
assumption (2.4).

Theorem 2.3.13. A function σ̂ : (2A
∗
)n → 2A

∗
is causal if and only if it is contained

in a set of functions which can be given by BDEs.

Proof. From left to right, the result follows from Lemma 2.3.11. For the other
direction, assume a set of functions given by BDEs. We prove that

L1 ≈k K1, . . . , Ln ≈k Kn implies σ̂(L1, . . . , Ln) ≈k σ̂(K1, . . . ,Kn) (2.5)

for every σ̂ (with n the arity of σ̂) in the set and for every k, by induction on k.
Take any σ̂, with arity n, and given by the BDE (o, d). The base case (k = 0)

holds since L1 ≈0 K1, . . . , Ln ≈0 Kn implies

σ̂(L1, . . . , Ln)(ε) = o(L1(ε), . . . , Ln(ε))

= o(K1(ε), . . . ,Kn(ε)) = σ̂(K1, . . . ,Kn)(ε) .

Now suppose (2.5) holds for some k ∈ N, and suppose that we have languages
L1, . . . , Ln,K1, . . . ,Kn such that Li ≈k+1 Ki for each i ≤ n. We need to prove:

σ̂(L1, . . . , Ln) ≈k+1 σ̂(K1, . . . ,Kn) . (2.6)

34 Chapter 2. Coinduction for languages

Since Li ≈k+1 Ki by assumption, we have for each i ≤ n: Li ≈k Ki, Li(ε) ≈k
Ki(ε) and for each a ∈ A: (Li)a ≈k (Ki)a. By the induction hypothesis (2.5) and
Lemma 2.3.12 it follows that, for each a ∈ A:

I(d(a)[xi := Li]i≤n[xai := (Li)a]i≤n,a∈A[xεi := Li(ε)]i≤n)

≈k I(d(a)[xi := Ki]i≤n[xai := (Ki)a]i≤n,a∈A[xεi := Ki(ε)]i≤n)

where d is the function that specifies the derivative of σ̂, and thus

σ̂(L1, . . . , Ln)a = I(ρn(d(a))(L1, . . . , Ln))

= I(d(a)[xi := Li]i≤n[xai := (Li)a]i≤n,a∈A[xεi := Li(ε)]i≤n)

≈k I(d(a)[xi := Ki]i≤n[xai := (Ki)a]i≤n,a∈A[xεi := Ki(ε)]i≤n)

= I(ρn(d(a))(K1, . . . ,Kn))

= σ̂(K1, . . . ,Kn)a .

Since, moreover, σ̂(L1, . . . , Ln)(ε) = σ̂(K1, . . . ,Kn)(ε) we get (2.6) as desired.

By Theorem 2.3.6 and the above result we directly obtain causality as a suffi-
cient condition for the soundness of bisimulation up-to.

Corollary 2.3.14. Suppose every function of an interpretation {σ̂}σ∈Σ is causal.
Then bisimulation up-to w.r.t. {σ̂}σ∈Σ is sound, i.e., if R is a bisimulation up-to w.r.t.
{σ̂}σ∈Σ then (L,K) ∈ R implies L = K.

2.4 Simulation (up-to)

So far we have focused on techniques for showing equality of languages. Of course,
these methods can also be used to prove language inclusion, since L ⊆ K iff L +
K = K. However, there is a more direct way: instead of bisimulations, one can
construct simulations, which in practice turns out to be easier for proving language
inclusion.

Definition 2.4.1. Let (X, o, t) be a deterministic automaton. A simulation is a
relation R ⊆ X ×X such that for any (x, y) ∈ R:

1. o(x) ≤ o(y), and

2. for all a ∈ A : (t(x)(a), t(y)(a)) ∈ R.

The difference with bisimulation is that condition (1) is relaxed: if x is a final
state then y should be final as well, but if x is not final then the output of y does
not matter.

Theorem 2.4.2. If R ⊆ 2A
∗ × 2A

∗
is a simulation (on the automaton of languages

defined in Section 2.1) then for any (L,K) ∈ R: L ⊆ K.

2.4. Simulation (up-to) 35

Thus simulation is a concrete proof principle for language inclusion, just like
bisimulation is a proof principle for language equality.

Simulation up-to is based on a precongruence rather than a congruence closure;
the difference is that the precongruence is not symmetric, and it relates L to K
whenever L is included in K.

Definition 2.4.3. For a relationR ⊆ 2A
∗×2A

∗
, define the precongruence closure 5Σ

R

of R w.r.t. an interpretation {σ̂}σ∈Σ as the least relation 5 satisfying the following
rules:

LRK

L 5 K

L ⊆ K
L 5 K

L 5 K K 5M

L 5M

L1 5 K1 . . . Ln 5 Kn

σ̂(L1, . . . , Ln) 5 σ̂(K1, . . . ,Kn)
for each σ ∈ Σ, n = |σ|

R is a simulation up-to (w.r.t. an interpretation {σ̂}σ∈Σ), if for any (L,K) ∈ R:

1. L(ε) ≤ K(ε), and

2. for all a ∈ A : La 5Σ
R Ka.

Our soundness criterion for bisimulation up-to, which is that the operations
can be given by BDEs, turns out not to be strong enough for simulation up-to, as
witnessed by the following example.

Example 2.4.4. The complement operation can be given by BDEs (Lemma 2.3.7).
Consider the relation R = {(aA∗, 0)}. We have (aA∗)(ε) = 0 = 0(ε). Moreover
(aA∗)a = A∗ = 0 and 0a = 0 = A∗. Since 0 ⊆ A∗, we have 0 5R A∗ and
thus (aA∗)a 5R 0a, showing that R is a simulation up-to. But clearly aA∗ 6⊆ 0,
so simulation up-to with respect to language complement is not a sound proof
principle.

Our solution is to require in addition that the operations under consideration
satisfy a monotonicity condition.

Definition 2.4.5. A set {σ̂}σ∈Σ of operations is given by monotone BDEs if

1. {σ̂}σ∈Σ is given by BDEs, and

2. for each σ ∈ Σ: the associated (output) function o : 2n → 2 is monotone, i.e.,
if oj ≤ uj for all j with 1 ≤ j ≤ n then o(o1, . . . , on) ≤ o(u1, . . . , un).

Theorem 2.4.6. If {σ̂}σ∈Σ can be given by monotone BDEs then for any relation R
which is a simulation up-to w.r.t. {σ̂}σ∈Σ: if (L,K) ∈ R then L ⊆ K.

Proof. The proof is mostly that of Theorem 2.3.6. One proves by induction that
5, the precongruence closure of R, is a simulation. The only difference is the first
part of the inductive step, which concerns the output. Suppose σ̂ is an operation
of arity n, from a set {σ̂}σ∈Σ of operations given by monotone BDEs, and let o be

36 Chapter 2. Coinduction for languages

its output function. Let L1, . . . , Ln and K1, . . .Kn be languages such that for all j:
Lj(ε) ≤ Kj(ε). Then

σ̂(L1, . . . , Ln)(ε) = o(L1(ε), . . . , Ln(ε))

≤ o(K1(ε), . . . ,Kn(ε)) = σ̂(K1, . . . ,Kn)(ε)

where we use the assumption that o is monotone.

Example 2.4.7. The general version of Arden’s rule states that, given languages K
and M , the least solution of L = KL+M is K∗M . Furthermore, if K(ε) = 0 then
it is the unique one, as we have seen in Example 2.2.6. For the proof of the general
statement, first notice that K∗M is indeed a solution since K∗M = (KK∗+1)M =
KK∗M + M . To show that it is the least one, let L be any language such that
L = KL + M and consider the relation R = {(K∗M,L)}. Then R is a simulation
up-to, since (K∗M)(ε) = M(ε) ≤ (KL+M)(ε) = L(ε) and for any a:

(K∗M)a = KaK
∗M +Ma 5R KaL+Ma

⊆ KaL+K(ε)La +Ma = (KL+M)a = La .

Thus K∗M is the least solution.

The reader is invited to formulate and prove a version of Arden’s rule, where
shuffle and shuffle closure (Section 2.3.2) replace concatenation and Kleene star.
Further, in Example 2.2.5 we proved M + KL ⊆ L ⇒ K∗M ⊆ L using a bisimu-
lation up-to. The proof using a simulation up-to is the same as (part of) the above
proof of Arden’s rule. One might expect that M + LK ⊆ L ⇒ MK∗ ⊆ L has a
similar treatment, but due to the asymmetry of the derivative of concatenation the
proof is different.

Example 2.4.8. In order to proveM+LK ⊆ L⇒MK∗ ⊆ L, consider the relation
R = {(MK∗, L) | M + LK ⊆ L; L,K,M ∈ 2A

∗}. Let L,K,M be such languages;
then M(ε) ≤ L(ε), so (MK∗)(ε) ≤ L(ε). For any a ∈ A, we have

(MK∗)a = MaK
∗ +M(ε)KaK

∗ = (Ma +M(ε)Ka)K∗

In order to see that this is related by 5R to La, we start with our assumption
M+LK ⊆ L and compute derivatives: (M+LK)a ⊆ La, so Ma+LaK+L(ε)Ka ⊆
La. Reformulating this as (Ma + L(ε)Ka) + LaK ⊆ La, we have

((Ma + L(ε)Ka)K∗, La) ∈ R .

Since M(ε) ≤ L(ε) we thus obtain

(MK∗)a = (Ma +M(ε)Ka)K∗ ⊆ (Ma + L(ε)Ka)K∗ 5R La

as desired, showing that R is a simulation up-to.

We conclude with the soundness of an axiom that concerns the interplay be-
tween shuffle and concatenation and that is used, for example, in concurrency
theory [HMSW11].

2.5. Discussion and related work 37

Example 2.4.9. The exchange law states that

(M ⊗ L)(K ⊗N) ⊆ (MK)⊗ (LN)

for any languages M,L,K,N . Consider the relation

R = {((M ⊗ L)(K ⊗N), (MK)⊗ (LN)) |M,K,L,N ∈ 2A
∗
} .

Then

((M ⊗ L)(K ⊗N))(ε) = M(ε) ∧ L(ε) ∧K(ε) ∧N(ε) = ((MK)⊗ (LN))(ε)

and for any alphabet letter a:

((M ⊗ L)(K ⊗N))a
= (Ma ⊗ L+M ⊗ La)(K ⊗N) + (M ⊗ L)(ε)(Ka ⊗N +K ⊗Na)
= (Ma ⊗ L)(K ⊗N) + (M ⊗ La)(K ⊗N) + (M(ε) ∧ L(ε))(Ka ⊗N)

+(M(ε) ∧ L(ε))(K ⊗Na)
5R (MaK)⊗ (LN) + (MK)⊗ (LaN)

+(M(ε)Ka)⊗ (L(ε)N) + (M(ε)K)⊗ (L(ε)Na)
⊆ (MaK)⊗ (LN) + (MK)⊗ (LaN)

+(M(ε)Ka)⊗ (LN) + (MK)⊗ (L(ε)Na)
= (MaK +M(ε)Ka)⊗ (LN) + (MK)⊗ (LaN + L(ε)Na)
= ((MK)⊗ (LN))a

This shows that R is a simulation up-to and proves the exchange law.

The proof in the above example is clearly easier than one where the inclusion
would be reduced to checking equality by means of bisimilarity.

2.5 Discussion and related work

We presented bisimulation up-to as a proof method for language equivalence, and
simulation up-to as a proof method for language inclusion. These techniques are
sound enhancements of the coinductive proof method based on (bi)simulation, if
the operations under consideration adhere to the format of behavioural differential
equations presented in this chapter. For the soundness of simulation up-to, the
operations additionally need to satisfy a monotonicity condition.

Deterministic automata are coalgebras, and the notions of bisimulation and
coinduction introduced in Section 2.1 are instances of general definitions [Rut98a].
The up-to techniques introduced in this chapter are also instances of much more
general results developed in subsequent chapters of this thesis. In fact, the for-
mat of BDEs can be represented by a distributive law, which immediately proves
the soundness (actually, a stronger notion) of bisimulation up-to. Moreover, the
monotonicity condition for simulation up-to arises from a result in Chapter 5 that
requires that the distributive law lifts to a certain category.

38 Chapter 2. Coinduction for languages

A discussion of related work with respect to more general up-to techniques is
postponed to Chapter 5. Relevant in the present context is the work of Bonchi
and Pous [BP13], which consists of a new algorithm for checking equivalence of
non-deterministic automata based on bisimulation up to congruence, improving
the state of the art significantly (see also [HR15]). That algorithm is based on
the algebraic structure of the powerset of states, obtained by determinization. Our
approach is different in that we consider algebraic structures for arbitrary calculi
on languages (given by behavioural differential equations). Moreover, we do not
focus on the algorithmic aspect, but consider up-to techniques for infinite state
systems, in order to prove, e.g., inequalities over arbitrary languages.

Bisimulation up-to techniques have been applied to facilitate coinductive defi-
nitions and proofs in Coq [EHB13]. In fact, the latter paper uses causal contexts on
streams as a condition for soundness; as shown in [HKR14] (and extended to lan-
guages in this chapter), this condition is equivalent to requiring that the operations
under consideration can be defined by behavioural differential equations.

Our techniques are more widely applicable than only to regular languages, as
we have shown in a number of examples involving equations over arbitrary lan-
guages. Nevertheless, we recall some of the related work on checking equiva-
lence of regular expressions, for which a wide range of different tools and tech-
niques has been developed. We only recall the ones most relevant to our work.
CIRC [LGCR09] is a general coinductive theorem prover, which can deal with reg-
ular expressions. Recently, various algorithms based on Brzozowski derivatives
and bisimulations have been implemented in Isabelle [KN12] and formalized in
type theory, yielding an implementation in Coq [CS11] (while [CS11] does not
mention bisimulations explicitly, their method is based on constructing a bisimu-
lation). There is another Coq implementation of regular expression equivalence,
which is based on partial derivatives [MPdS12]. An efficient algorithm for de-
ciding equivalence in Kleene algebra, based on automata but not on derivatives
and bisimulations, was recently implemented in Coq as well [BP12]. We refer
to [NT14] for an overview and comparison between these approaches. Of course,
one can reason about regular expressions in Kleene algebra. This is however a
fundamentally different approach than the coinductive techniques of the present
chapter. In [Gra05], a proof system for equivalence of regular expressions is pre-
sented, based on bisimulations but not on bisimulation up-to. In [HN11], a general
coinductive axiomatization of regular expression containment is given, based on
an interpretation of regular expressions as types. The authors of [HN11] instanti-
ate their axiomatization with the main coinductive rule from [Gra05]. The focus
of [HN11] is on constructive proofs based on parse trees of regular expressions. In
contrast, our approach is based on bisimulations between languages.

The presented proof techniques apply to undecidable problems such as lan-
guage equivalence of context-free grammars. Indeed, automation is not aimed at
in this chapter. Nevertheless, the present techniques can be seen as a foundation
for novel interactive theorem provers, and extensions of fully automated tools such
as [KN12, LGCR09, CS11].

If one works with syntactic terms, such as regular expressions, rather than with

2.5. Discussion and related work 39

languages, the notion of bisimulation up to bisimilarity becomes relevant. In the
corresponding proof method, one relates terms modulo bisimilarity. Since we work
directly with languages, in our case this is not necessary, but for dealing with terms
our techniques can easily be combined with up-to-bisimilarity—see the subsequent
chapters of this thesis for details. Bisimulation up to bisimilarity (alone, with-
out context and equivalence closure) was originally introduced in [Mil83], and in
the context of automata and languages simulation up to similarity was introduced
in [Rut98a].

Chapter 3

Preliminaries

In the previous chapter, we studied coinduction for languages and deterministic
automata. Deterministic automata are a special case of the theory of coalgebras,
which encompasses coinduction principles for a wide variety of systems. In the re-
maining chapters we develop theory at this more abstract coalgebraic level, so that
the results in Chapter 2 are just one instance, among others. In the current chapter
we recall standard notions and results on coalgebras, coinduction and algebras.
We assume familiarity with basic concepts from category theory such as functors
and natural transformations (see, e.g., [Awo10, Lan98]).

Below, we first fix some basic notation regarding sets, relations, functions and
categories. Then we introduce coalgebras, homomorphisms and bisimulations, and
discuss examples of coinductive techniques (Section 3.1). We proceed to discuss a
more classical interpretation of coinduction, and relate this to the coalgebraic per-
spective in Section 3.2. This discussion of coinduction is continued in Section 3.3,
where we recall an approach to coinduction based on the categorical notion of fi-
brations. We recall algebras for functors and monads in Section 3.4, and conclude
this chapter with a discussion of distributive laws and bialgebras (Section 3.5).

Section 3.3, on coinduction in a fibration, can be challenging to understand
without prior knowledge of fibrations. However, in this thesis it is only required for
Chapter 5. Moreover, most of Chapter 4 requires only basic concepts on coalgebras
(Section 3.1) and algebras (the beginning of Section 3.4).

Most of the material in this chapter is taken from the literature; for more in-
formation, see, e.g., [Rut00, JR12, Jac12, Len98] (coalgebras and coinduction),
[HJ98, HCKJ13] (coinduction in a fibration), [BW05, Awo10, Tur96] (algebras
and monads) and [TP97, Kli11, Bar04] (distributive laws and bialgebras).

Sets. By Set we denote the category of sets and functions. We write 1 for the
singleton {∗}, 2 for the two elements set {0, 1}, N for the set of natural numbers
and R for the set of real numbers. Given sets X and Y , X × Y is the Cartesian
product of X and Y (with the usual projection maps π1 and π2) and X + Y is the
coproduct, i.e., disjoint union (with coproduct injections κ1, κ2).

41

42 Chapter 3. Preliminaries

Relations. Given a relation R ⊆ X × Y , we write π1 : R → X and π2 : R → Y
for its left and right projection, respectively. Given another relation S ⊆ Y × Z we
denote the composition of R and S by R ◦ S. We let Rop = {(y, x) | (x, y) ∈ R}.
The diagonal relation on a set X is ∆X = {(x, x) | x ∈ X}.

Functions. Let f : X → Y be a function. The direct image of a set S ⊆ X under
f is denoted simply by f(S) = {f(x) | x ∈ S}, and the inverse image of V ⊆ Y
by f−1(V) = {x | f(x) ∈ V }. The kernel of f is given by ker(f) = {(x, y) |
f(x) = f(y)}. The pairing of two functions f, g with a common domain is denoted
〈f, g〉 and the copairing (for functions f, g with a common codomain) is denoted
by [f, g]. The set of functions from X to Y is denoted by Y X ; if we fix X, this
yields a (covariant) functor on Set. The i-fold application of a function f : X → X
is denoted by f i, i.e., f0 = id and f i+1 = f ◦ f i.

Categories. On any category, we write Id for the identity functor, and idX or
simply id for the identity morphism of an object X. The product of categories C
and D is denoted by C × D; an object of C × D is a pair consisting of an object
from C and one from D, and an arrow is a pair of arrows from C and D of the
matching types. Any two functors F : C → D and G : C′ → D′ yield a functor
F ×G : C×C′ → D×D′. We use the same notation for the product of functors (in a
category of functors and natural transformations), i.e., given F,G as above so that
C = C′, D = D′ and D has products, we let (F × G)(X) = FX × GX. It should
always be clear from the context which meaning of × is referred to.

Given a set X, P(X) is the set of subsets of X, and Pω(X) is the set of finite
subsets of X. Both P and Pω extend to functors on Set, defined on functions by
direct image: P(f)(V) = f(V) and Pω(f)(V) = f(V). Given a semiring S, we
denote byMX the set of linear combinations of X with coefficients in S. Formally,
it is defined byMX = {ϕ ∈ SX | supp(ϕ) is finite}, where supp(ϕ) = {x | ϕ(x) 6=
0}. This extends to a functor M : Set → Set, sending f : X → Y to M(f)(ϕ) =
λy.
∑
x∈f−1(y) ϕ(x). We often denote a linear combination ϕ ∈ MX by a formal

sum of the form
∑
sixi, where si ∈ S and xi ∈ X for all i.

3.1 Coalgebras

A coalgebra for a functor B : C → C, or B-coalgebra, is a pair (X, δ) where X is an
object in C and δ : X → BX a morphism. We often refer to X as the carrier or
state space, δ as the transition map or transition structure, and B as the behaviour
functor. A (coalgebra) homomorphism from (X, δ) to (Y, ϑ) is a map h : X → Y
such that ϑ ◦ h = Bh ◦ δ:

X
h //

δ

��

Y

ϑ

��
BX

Bh
// BY

3.1. Coalgebras 43

The category of B-coalgebras is denoted by B-coalg.
A B-coalgebra (Z, ζ) is final if there exists, for any B-coalgebra (X, δ), a unique

homomorphism from (X, δ) to (Z, ζ). Final coalgebras are unique up to isomor-
phism, therefore we often speak about the final coalgebra. In general, a final
B-coalgebra does not necessarily exist, but there are mild conditions on B un-
der which it does: for instance, when B is a bounded functor on Set (see, e.g.,
[Rut00]). The coinductive extension of a coalgebra (X, δ) is the unique homomor-
phism into the final coalgebra. Following [JR12], we make a conceptual identifica-
tion of (coalgebraic) coinduction with the use of finality in categories of coalgebras.
As we will see below, the unique existence of morphisms gives rise both to definition
principles and to proof principles.

In the remainder of this section we assume that B is a functor on Set. Given a
B-coalgebra (X, δ) and states x, y ∈ X, we say x and y are behaviourally equiva-
lent or observationally equivalent if there exists a coalgebra homomorphism h from
(X, δ) to some B-coalgebra so that h(x) = h(y). In particular, x, y ∈ X are be-
haviourally equivalent precisely if they are identified by the coinductive extension
of δ. The largest relation on X containing only behaviourally equivalent pairs is
called behavioural equivalence. We denote this relation by ≈δ, or simply ≈.

Example 3.1.1. We list several examples of coalgebras; see, e.g., [Rut00] for more.

1. Let BX = A × X, for a fixed set A. A B-coalgebra 〈o, t〉 : X → A × X is a
stream system (over A). For each state x ∈ X, we observe an output o(x) ∈ A,
and a next state t(x) ∈ X.

The finalB-coalgebra is 〈(−)0, (−)′〉 : Aω → A×Aω, whereAω = {σ | σ : N→
Aω} is the set of streams over A, and for any stream σ ∈ Aω: σ0 = σ(0) and
σ′(n) = σ(n+ 1) for all n ∈ N. The coinductive extension of a stream system
〈o, t〉 : X → A×X maps a state x to the stream (o(x), o(t(x)), o(t(t(x))), . . .).

Stream systems do not involve termination, and therefore they generate only
infinite streams. The final coalgebra of (A × Id) + 1 consists of all finite and
infinite streams over A.

2. A labelled transition system over a set of labels A is a coalgebra for the functor
BX = P(A × X). Indeed, a B-coalgebra consists of a set X of states and
a map δ : X → P(A × X) that sends each state to a set of transitions. We
write x a−→ y if (a, y) ∈ δ(x). Labelled transition systems can equivalently be
presented as coalgebras for the functor (P−)A. A finitely branching transition
system is a coalgebra for the functor Pω(A × Id). An image finite transition
system is a coalgebra for (Pω−)A.

The functor P(A× Id) does not have a final coalgebra, for cardinality reasons
(the transition map of any final coalgebra is an isomorphism). Nevertheless,
Pω(A× Id) has a final coalgebra: it consists of (finitely branching) trees edge-
labelled in A, and quotiented by strong bisimilarity in the usual sense (see
below). Similarly, (Pω−)A has a final coalgebra given by equivalence classes
of trees in which every node has only a finite number of a-successors, for
each a ∈ A.

44 Chapter 3. Preliminaries

3. Let BX = 2×XA. A coalgebra 〈o, t〉 : X → BX is a deterministic automaton;
a state x is accepting if o(x) = 1, and x makes an a-transition to y (denoted
x

a−→ y) if t(x)(a) = y.

The final coalgebra for 2 × IdA is the deterministic automaton introduced
in Section 2.1: its carrier is given by the set 2A

∗
of all languages over A, a

state accepts if the corresponding language contains the empty word, and
the transition map is given by language derivative. Given any deterministic
automaton 〈o, t〉 : X → 2×XA, the coinductive extension l : X → 2A

∗
is the

usual language semantics, i.e., for any x ∈ X: l(x)(ε) = o(x) and l(x)(aw) =
l(t(x)(a))(w).

More generally, we can consider Moore automata, which are coalgebras for
the functor BX = S × XA, where S is a set of outputs. The carrier of the
final coalgebra is SA

∗
.

4. A non-deterministic automaton is a coalgebra for BX = 2× (PωX)A. Given a
coalgebra 〈o, t〉 : X → 2× (PωX)A, for each state x ∈ X, a state is accepting
if o(x) = 1, and for each a ∈ A there is a set of next states t(x)(a). We write
x

a−→ y for y ∈ t(x)(a).

The final coalgebra of B does not consist of languages. Rather, it consists of
trees edge-labelled in A and node-labelled in 2, quotiented by strong bisim-
ilarity. Thus, the branching behaviour of automata is taken into account,
and therefore we obtain a finer notion of behavioural equivalence than that
arising from the usual language semantics.

5. Let S be a semiring, and M the associated functor mapping sets to linear
combinations with coefficients in S. A weighted transition system is a coal-
gebra for the functor BX = (MX)A. A weighted automaton is a weighted
transition system where states additionally feature output, i.e., a coalgebra
for the functor S× (M−)A. Weighted automata accept weighted languages,
but the final coalgebra of B distinguishes more, similar to the case of non-
deterministic automata; see [BBB+12] for details.

3.1.1 Coinductive definitions

The final B-coalgebra provides a canonical semantics for B-coalgebras. In particu-
lar, we can use finality to define operations on the final coalgebra. As an elementary
example, consider the functor R × Id of stream systems over the reals, and recall
that its final coalgebra is the set of streams Rω. To define a pointwise sum on
streams, we construct a coalgebra 〈o, t〉 : Rω × Rω → R × (Rω × Rω) as follows:
o(σ, τ) = σ0 + τ0 and t(σ, τ) = (σ′, τ ′) (where we use the operations (−)0 and (−)′,
which form the transition map of the final coalgebra, see Example 3.1.1 (1)). By

3.1. Coalgebras 45

finality this gives rise to a unique homomorphism h:

Rω × Rω h //_____

〈o,t〉
��

Rω

〈(−)0,(−)′〉
��

R× (Rω × Rω)
id×h

// R× Rω

which maps a pair of streams to their pointwise sum.
The above way of coinductively specifying and defining operations on streams is

a special case of behavioural differential equations [Rut03] (see also Chapter 2), in
which an operation is defined by specifying its initial value (−)0 and its derivative
(−)′. We illustrate this by defining several operators:

Initial value Differential equation Name
(σ + τ)0 = σ0 + τ0 (σ + τ)′ = σ′ + τ ′ sum
(σ × τ)0 = σ0 · τ0 (σ × τ)′ = σ′ × τ + [σ0]× τ ′ convolution product
[r]0 = r [r]′ = [0] constant (for any r ∈ R)

In the first column, the operations + and · on the right of the equations are the
standard operations on R. We associate a set T of terms to the above operators,
defined by the grammar

t ::= σ | t1 + t2 | t1 × t2 | [r] (3.1)

where σ ranges over Rω and [r] ranges over {[r] | r ∈ R}. Now the above dif-
ferential equations specify how to define a stream system T → R × T . The
unique coalgebra morphism T → Rω then provides the semantics of the opera-
tors [Rut03, HKR14]. In Section 3.5 we will see how to study such coinductive
definition methods in a structured, categorical way.

In Chapter 2 we have seen behavioural differential equations for languages;
notice that the characterization of union and concatenation of Lemma 2.1.3 re-
sembles the above definition of the sum and convolution product on streams. One
difference to the previous chapter is that there, we characterize pre-defined oper-
ations using differential equations, whereas here we use the differential equations
to define the operations.

Two more operations on streams, which we study in the next chapter, are shuffle
and shuffle inverse:

Initial value Differential equation Name
(σ ⊗ τ)0 = σ0 · τ0 (σ ⊗ τ)′ = σ′ ⊗ τ + σ ⊗ τ ′ shuffle product
(σ−1)0 = (σ0)−1 (σ−1)′ = −σ′ ⊗ (σ−1 ⊗ σ−1) shuffle inverse

The inverse is only defined on streams σ for which σ0 6= 0. We abbreviate [−1]⊗ σ
by −σ. The set of terms involving sum, shuffle product and inverse can be defined
as before by a grammar. However, since the inverse is only defined when σ0 6= 0,
it is not directly clear how to turn the set of terms into a stream system. We call

46 Chapter 3. Preliminaries

a term well-formed if the inverse is never applied to a subterm with initial value
0; this notion can be straightforwardly defined by induction, and we let Twf be
the set of well-formed terms. This set can now be turned into a stream system by
induction, using the above specification.

A different use of coalgebras is to study determinization constructions at an ab-
stract level, so that language semantics arises by finality [JSS12, SBBR13, Rut00].
Consider a non-deterministic automaton 〈o, t〉 : X → 2 × (PωX)A. As discussed
in Example 3.1.1, the coinductive extension of such an automaton does not map
a state to the language it accepts. However, we can turn this coalgebra into a
deterministic automaton

〈o], t]〉 : PωX → 2× (PωX)A

according to the standard powerset construction. This is a deterministic automa-
ton, and the language accepted by a singleton {x} is precisely the language ac-
cepted by the state x of the original non-deterministic automaton.

For another example of a determinization construction, consider a weighted au-
tomaton 〈o, t〉 : X → S×(MX)A. This induces a Moore automaton 〈o], t]〉 : MX →
S× (MX)A where o] : MX → S and t] : MX → (MX)A are the linear extensions
of o and t. By finality, a unique coalgebra homomorphism l : MX → SA∗ arises,
which corresponds to the language semantics of weighted automata. For a detailed
explanation see [BBB+12, Section 3] and Example 3.5.2.

3.1.2 Bisimulations and coinductive proofs

The definition of coalgebra homomorphisms provides us with a canonical notion of
behavioural equivalence. However, this does not directly give us associated proof
techniques, other than the rather abstract property that coinductive extensions are
unique. A more concrete proof method is provided by the notion of bisimilarity,
which is another fundamental part of the theory of coalgebras. Next, we introduce
bisimulations and show a number of concrete examples, and subsequently relate
bisimilarity to behavioural equivalence.

A relation R ⊆ X × Y is a bisimulation between coalgebras (X, δ) and (Y, ϑ)
if there exists a transition map γ : R → BR such that the projections π1 and π2 of
R are coalgebra homomorphisms, which means that the following diagram com-
mutes [AM89]:

X

δ

��

R
π1oo

γ

��

π2 // Y

ϑ

��
BX BR

Bπ1

oo
Bπ2

// BY

If (X, δ) = (Y, ϑ) then we call R a bisimulation on (X, δ). The greatest bisimulation
on a given coalgebra (X, δ) is called bisimilarity and is denoted by ∼δ, or simply ∼
if δ is clear from the context.

3.1. Coalgebras 47

Example 3.1.2.

1. Let 〈o, t〉 : X → A × X be a stream system. A relation R ⊆ X × X is a
bisimulation if for all (x, y) ∈ R: o(x) = o(y) and (t(x), t(y)) ∈ R.

As an example, let T be the set of terms as defined in Equation (3.1), and let
〈(−)0, (−)′〉 : T → R× T be the stream system defined by the corresponding
behavioural differential equations. Let us prove that s + u ∼ u + s for any
streams s, u. To this end, consider the relation R = {(s+u, u+s) | s, u ∈ Rω}.
For any s, u we have (s + u)0 = s0 + u0 = u0 + s0 = (u + s)0. Moreover,
(s + u)′ = (s′ + u′) R (u′ + s′) = (u + s)′. Thus, R is a bisimulation.
As we will see below in a more general fashion, this implies that s and u
are mapped to the same element in the final coalgebra, meaning that they
are assigned the same behaviour. Commutativity of the sum is admittedly a
rather trivial property, but it serves here to illustrate the basic methodology of
constructing a bisimulation. For many examples of such proofs for streams,
see [Rut03, HKR14]; we will also see more advanced proofs in Section 4.2.

2. On labelled transition systems, bisimilarity coincides with the classical notion
of strong bisimilarity introduced by Milner and Park [Mil80, Par81]. Given
δ : X → P(A×X), a relation R ⊆ X×X is a bisimulation if for all (x, y) ∈ R:
if x a−→ x′ then there is y′ such that y a−→ y′ and (x′, y′) ∈ R; and if y a−→ y′

then there is x′ such that x a−→ x′ and (x′, y′) ∈ R.

3. Let 〈o, t〉 : X → S × XA be a Moore automaton. A relation R ⊆ X × X
is a bisimulation if for all (x, y) ∈ R: o(x) = o(y) and for all a ∈ A:
(t(x)(a), t(y)(a)) ∈ R. The notion of bisimulation on deterministic automata
(Definition 2.1.1) is a special case, and a concrete example of such a bisimu-
lation is in Example 2.1.5.

4. Let δ : X → X + 1 be a coalgebra (for the functor BX = X + 1). A relation
R ⊆ X×X is a bisimulation if for any pair (x, y) ∈ R: either δ(x) = ∗ = δ(y)
or (δ(x), δ(y)) ∈ R.

Coalgebra homomorphisms preserve bisimilarity.

Lemma 3.1.3 ([Rut00], Lemma 5.3). Suppose f : X → Y and g : X → Z are
coalgebra homomorphisms. If R ⊆ X × X is a bisimulation then (f × g)(R) is a
bisimulation.

If the functor B preserves weak pullbacks, then the inverse image of a bisim-
ulation along a coalgebra homomorphism is again a bisimulation [Rut00, Lemma
5.9]. Thus, in that case, homomorphisms also reflect bisimilarity.

The uniqueness of morphisms into the final coalgebra is, by Lemma 3.1.3 and
the fact that the diagonal relation on any coalgebra is a bisimulation [Rut00, Propo-
sition 5.1], equivalent to the following property.

Theorem 3.1.4. Suppose B has a final coalgebra (Z, ζ). For any x, y ∈ Z:

x ∼ y iff x = y .

48 Chapter 3. Preliminaries

This is sometimes called strong extensionality, the coinductive proof principle
or simply coinduction. Together with Lemma 3.1.3, it entails that, given the bisim-
ilarity relation ∼ on any coalgebra:

x ∼ y implies h(x) = h(y) (3.2)

where h is the coinductive extension of that coalgebra. Thus, in order to prove that
two states have the same behaviour, it suffices to construct a bisimulation.

Example 3.1.5. The foundation of the previous chapter is its coinduction principle
Theorem 2.1.2, which states that bisimilarity of languages implies their equality.
Indeed, languages form the final coalgebra for the functor BX = 2 × XA of de-
terministic automata, and thus that coinduction principle is an instance of Theo-
rem 3.1.4. Further, Equation (3.2) asserts that bisimilarity on any deterministic
automaton implies behavioural equivalence. This means that, to prove that two
states of an arbitrary deterministic automaton accept the same language, it suffices
to prove that they are bisimilar.

If the functor B preserves weak pullbacks, then homomorphisms reflect bisimi-
larity, and thus together with Theorem 3.1.4 it implies the converse of (3.2).

Lemma 3.1.6. IfB preserves weak pullbacks then bisimilarity and behavioural equiv-
alence coincide, on any B-coalgebra.

As an example, the functor BX = 2 × XA preserves weak pullbacks. Conse-
quently, two states of a deterministic automaton accept the same language if and
only if they related by a bisimulation.

Weak pullback preservation is a mild condition: for instance, it is satisfied by
all functors mentioned in Example 3.1.1, except weighted automata and weighted
transition systems. For weighted systems, weak pullback preservation only holds
under certain conditions on the semiring [GS01, Kli09, BBB+12]. In the cases
where it does not hold, behavioural equivalence seems to be of more interest.

3.2 Classical and coalgebraic coinduction

A standard formalization of coinduction is in terms of complete lattices. This is,
for instance, the basis of Sangiorgi’s introductory text on coinduction [San12a].
This perspective on coinduction, which we call classical coinduction (as opposed to
coalgebraic coinduction) also plays an important role in this thesis, therefore we
recall the basics. In this section we also see how to define coalgebraic bisimula-
tions in the lattice-theoretic setting, and how classical coinduction is generalized
by coalgebraic coinduction, i.e., the finality principle in categories of coalgebras.

The starting point is a complete lattice: a partial order (L,≤) in which each
subset of L has both a least upper bound and a greatest lower bound. Given a
function f : L → L, an element x ∈ L is a fixed point of f if f(x) = x, and a post-
fixed point if x ≤ f(x). If f is monotone (that is, x ≤ y implies f(x) ≤ f(y)) then

3.2. Classical and coalgebraic coinduction 49

by the Knaster-Tarski theorem it has a greatest fixed point gfp(f), which is also the
greatest post-fixed point (see, e.g., [San12a]).

The existence of a greatest fixed point constitutes a coinductive definition prin-
ciple: we call gfp(f) the coinductive predicate defined by f . The fact that it is the
greatest post-fixed point constitutes a coinductive proof principle: to prove that
x ≤ gfp(f), it suffice to show that x ≤ f(x). In the sequel we shall sometimes refer
to post-fixed points of f as f -invariants.

Example 3.2.1. Consider the lattice L = P(Aω × Aω) consisting of relations on
streams, ordered by inclusion. Define the monotone function f : L→ L by

f(R) = {(σ, τ) | σ0 = τ0 and (σ′, τ ′) ∈ R}

where (−)0 and (−)′ form the transition structure of the final stream system, as in
Example 3.1.1 (1). A relation R is an f -invariant (post-fixed point of f) precisely if
it is a bisimulation on the final stream system. Since f is monotone, the coinductive
predicate (the greatest fixpoint) exists: it is given by bisimilarity on the final coal-
gebra of stream systems, that is, the diagonal relation on streams. The coinductive
proof principle asserts that any bisimulation is contained in bisimilarity.

Notice that the above example can be adapted to define bisimilarity on any
stream system with carrier X, by replacing Aω ×Aω by X ×X, and replacing (−)0

and (−)′ in the definition of f by the transition map of the stream system under
consideration. Classical coinduction easily accommodates other predicates than
bisimilarity, as shown by a few basic examples below.

Example 3.2.2.

1. Let 〈o, t〉 : X → A×X be a stream system where A is equipped with a partial
order ≤, and consider the lattice P(X × X) of relations on X ordered by
inclusion. We define a monotone function f : P(X×X)→ P(X×X) on this
lattice:

f(R) = {(x, y) | o(x) ≤ o(y) and (t(x), t(y)) ∈ R} .

A relation R is an f -invariant if for all (x, y) ∈ R, we have o(x) ≤ o(y) and
(t(x), t(y)) ∈ R. The coinductive predicate defined by f is the greatest such
relation. Two states x, y ∈ X are related by this coinductive predicate if the
stream generated by x is pointwise less than the stream generated by y.

2. Let 〈o, t〉 : X → A × X be a stream system. Consider the lattice P(X)
of subsets of X, ordered by inclusion, and define the monotone function
f : P(X)→ P(X) on this lattice as follows:

f(P) = {x | o(x) ≤ o(t(x)) and t(x) ∈ P} .

Then an f -invariant is a set P ⊆ X so that for all x ∈ P : o(x) ≤ o(t(x)),
and t(x) ∈ P . The coinductive predicate defined by f , which is the largest
f -invariant, thus captures increasing streams.

50 Chapter 3. Preliminaries

3. Let 〈o, t〉 : X → 2×XA be a deterministic automaton, and consider the mono-
tone function f on the lattice of relations on X, defined as follows:

f(R) = {(x, y) | o(x) ≤ o(y) and ∀a ∈ A. (t(x)(a), t(y)(a)) ∈ R}

A relation R is an f -invariant precisely if it is a simulation (Definition 2.4.1).
The coinductive predicate defined by f is similarity, the greatest simulation.

3.2.1 Coalgebraic bisimulations via relation lifting

In Example 3.2.1 we have seen how to capture bisimulations on stream systems
as invariants for a monotone function. Next, we recall a general method of defin-
ing a monotone operator on the lattice of relations on the state space of a given
coalgebra, so that the coinductive predicate defined by this monotone operator is
bisimilarity. This approach was introduced in [HJ98, Rut98b] (see also [Jac12];
and see [Sta11] for a comparison of different notions of bisimulations).

For a functor B : Set → Set, the (canonical) relation lifting Rel(B) of B maps a
relation on X to a relation on BX (for any X). It is defined as follows:

Rel(R ⊆ X ×X) = {(x, y) ∈ BX ×BX | ∃z.Bπ1(z) = x and Bπ2(z) = y}

where π1, π2 are the projections of R. Thus, Rel(B) is the image of BR under
〈Bπ1, Bπ2〉. For certain classes of functors there are concrete, inductively defined
characterizations of relation lifting [HJ98, Jac12].

Now, given a coalgebra δ : X → BX we define a function

bδ = (δ × δ)−1 ◦ Rel(B) : P(X ×X)→ P(X ×X) (3.3)

on the lattice of relations on X ordered by inclusion. Invariants of the function bδ
are bisimulations on δ (defined as in Section 3.1.2), as stated below.

Lemma 3.2.3. A relation R ⊆ X ×X on the carrier of a coalgebra δ : X → BX is
a bisimulation if and only if R ⊆ bδ(R). Bisimilarity on (X, δ) is the greatest fixed
point of bδ.

A bisimulation is a relation with a transition structure, whereas a bδ-invariant
is a relation with a special property. This formulation is taken from [Jac12], to
which we refer for a more elaborate comparison. Lemma 3.2.3 asserts that both
characterizations are equivalent.

Relation lifting satisfies a number of properties that are be used in subsequent
chapters; see [Jac12, Section 4.4] for proofs.

Lemma 3.2.4. For any functor B : Set→ Set:

1. Rel(B)(∆X) = ∆BX .

2. If R ⊆ S then Rel(B)(R) ⊆ Rel(B)(S).

3. (Rel(B)(R))op = Rel(B)(Rop).

3.2. Classical and coalgebraic coinduction 51

4. Rel(B)(R ◦ S) ⊆ Rel(B)(R) ◦ Rel(B)(S).

5. Rel(B)((f × f)−1(S)) ⊆ (Bf ×Bf)−1(Rel(B)(S)).

If B preserves weak pullbacks, then the inclusions in items 4 and 5 are equalities.

As a consequence of item 2 above, bδ is monotone.

Theorem 3.2.5. Let B : Set→ Set be a functor. The following are equivalent:

1. B preserves weak pullbacks.

2. Rel(B) preserves composition, i.e., Rel(B)(R ◦ S) = Rel(B)(R) ◦ Rel(B)(S).

This is originally due to Trnková [Trn80]; for an accessible proof, see [Jac12,
Theorem 4.4.6] or [KKV12, Fact 3.6].

3.2.2 Classical coinduction in a category

Classical coinduction can be phrased in terms of categories, via the basic observa-
tion that any preorder (X,≤) (and thus in particular any complete lattice) forms a
category, whose set of objects is X, and which has an arrow from x to y if and only
if x ≤ y. A functor F on such a category is a monotone function on the preorder,
and F -coalgebras are post-fixed points of F (seen as a monotone function). The
final F -coalgebra then corresponds to the coinductive predicate defined by (the
monotone map) F (see, e.g., [NR09, HCKJ13]).

The definition principle of classical coinduction here is reformulated to the def-
inition of a final F -coalgebra, whereas the proof principle is the existence of a
morphism from any F -coalgebra into the final coalgebra. In this setting, we will
often refer to F -coalgebras as F -invariants. Instantiated to a lattice, the finality
principle entails that any F -invariant is below the coinductive predicate defined
by F . In this sense, the identification of coinduction with finality in categories
of coalgebras still applies in this setting. However, the definition and proof prin-
ciples carry a significantly different intuition than those discussed in Section 3.1;
there, we were defining maps into the final coalgebra and reasoning about them,
whereas here we take the final coalgebra itself as the defined object of interest, and
the existence of arrows as a proof principle.

Example 3.2.6. Let PredX be the category of predicates on a fixed set X, as given
by the complete lattice of subsets of X. Let δ : X → Pω(A × X) be a labelled
transition system, where the set of labels A contains a distinguished element τ ∈ A.
We define a functor F : PredX → PredX by

F (P ⊆ X) = {x ∈ X | ∃y.(τ, y) ∈ δ(x)} . (3.4)

An F -invariant (F -coalgebra) is a predicate P ⊆ X so that for any x ∈ P , there
exists a τ -transition into a state that is again in P , that is, there is y ∈ P such
that (τ, y) ∈ δ(x). The coinductive predicate defined by F is simply the greatest

52 Chapter 3. Preliminaries

fixed point of F seen as a monotone function; thus, it is the largest subset of states
x ∈ X that may diverge, that is, states that have an infinite path of τ steps. In terms
of modal logic, these are the states that satisfy νu.〈τ〉u.

In the above example, the system of interest is modelled by a coalgebra for
the functor Pω(A × Id) : Set → Set. The invariants of interest are coalgebras in a
category of predicates.

3.3 Liftings and coinduction in a fibration

We have established coinduction as the principle of finality in a category of coal-
gebras. In Section 3.1 we have seen how to instantiate this to a setting where
coalgebras model the systems of interest, yielding a canonical way of assigning
behaviour and equivalence to a coalgebra. In this setting, coinduction provides
a systematic account of bisimilarity and behavioural equivalence for all systems
of the given type. On the other hand, in Section 3.2 we have seen how a differ-
ent instantiation of coinduction yields the classical lattice-theoretic account, which
is very flexible and allows to define many other predicates than bisimilarity, but
is mainly suitable to define predicates on a single system. Here, bisimilarity and
other predicates can be seen as objects that live in a category of predicates.

A very general and systematic approach for studying coinductive predicates on
coalgebras can be achieved if the coalgebras of interest live in the base category
of a fibration. This provides a means to speak about properties or predicates on
coalgebras of interest. In this setting, invariants and coinductive predicates on a
given coalgebra, are themselves coalgebras in a category of predicates, similar to
the situation in the previous section. The functor on these predicates is defined in
a uniform manner, based on a lifting of the behaviour functor.

This fibrational approach to coinductive predicates for coalgebras was proposed
in [HJ98], and further developed in [HCKJ13] (as well as [AGJJ12, GJF13]). Be-
low, we first list the necessary definitions related to fibrations (Section 3.3.1), and
then describe the fibrational approach to coinductive predicates (Section 3.3.2).
All of the examples in this thesis are based on two fibrations, described in Exam-
ple 3.3.1 and Example 3.3.2. Of the remaining chapters in this thesis, the material
in the current section is only necessary to understand Chapter 5.

3.3.1 Fibrations

We refer to [Jac99] for more information on fibrations, and recall only a few basic
definitions and results.

A functor p : E → A is called a fibration when for every morphism f : X → Y in
A and every R in E with p(R) = Y there exists an object f∗(R) with p(f∗(R)) = X

and a morphism f̃R : f∗(R) → R such that p(f̃R) = f and f̃R is Cartesian, which
means that the following universal property holds: for all morphisms g : Z → X
in A and u : Q → R in E sitting above f ◦ g (i.e., p(u) = f ◦ g) there is a unique

3.3. Liftings and coinduction in a fibration 53

morphism v : Q→ f∗(R) such that u = f̃R ◦ v and p(v) = g.

Q

v $$J
J

J
J

u

**TTTTTTTTTTTTTTTTT

f∗(R)
f̃R

// R

Z

g %%KKKKKKKK
f◦g

**UUUUUUUUUUUUUUUUU

X
f
// Y

We shall often use a special case of the universal property of f̃R where p(Q) =
X. Then for any u : Q → R sitting above f there exists a unique v : Q → f∗(R)

above idX such that f̃R ◦ v = u:

Q

v
���
�

u

$$JJJJJJJJ

f∗(R)
f̃R

// R

X
f // Y

Given a fibration p : E → A, we call E the total category, andA the base category.
The fibre above an object X in A, denoted by EX , is the subcategory of E with
objects mapped by p to X and arrows mapped to the identity on X. We give a few
examples of fibrations below; see [Jac99] for many more.

A morphism f̃ as above is called a (p)-Cartesian lifting of f , and is unique up to
isomorphism. If we make a choice of Cartesian liftings, the association R 7→ f∗(R)
gives rise to the reindexing functor f∗ : EY → EX . On a morphism h : R→ S in EY ,
it is defined using the universal property of the Cartesian lifting f̃S:

f∗(R)
f̃R //

f∗(h)

���
�
� R

h

��
f∗(S)

f̃S

// S

Given morphisms f : X → Y and g : Y → Z in A, there is a natural isomorphism
(g ◦ f)∗ ∼= f∗ ◦ g∗ between reindexing functors.

A functor p : E → A is called a bifibration if both p and pop : Eop → Aop are
fibrations. Equivalently [Jac99, Lemma 9.1.2], p is a bifibration if each reindexing
functor f∗ : EY → EX has a left adjoint

∐
f :

EX

∐
f
++

⊥ EY
f∗

kk

54 Chapter 3. Preliminaries

We call
∐
f the direct image along f . This choice becomes more clear in the exam-

ples below.
For a fibration p : E → A we say that p has fibred finite (co)products if each fibre

has finite (co)products, preserved by reindexing functors. If p is a bifibration with
fibred finite products and coproducts, and A has finite products and coproducts,
then the total category E also has finite products and coproducts, strictly preserved
by p [Jac99, Example 9.2.5]. All bifibrations considered in this thesis are assumed
to have this structure.

Example 3.3.1 (The predicate bifibration). Let Pred be the category whose objects
are pairs of sets (P,X) with P ⊆ X and morphisms f : (P,X) → (Q,Y) are maps
f : X → Y so that f(P) ⊆ Q. The functor p : Pred → Set mapping (P,X) to
X is a fibration. The fibre PredX above X is the complete lattice of subsets of
X ordered by inclusion. For any map f : X → Y in Set the reindexing functor
f∗ : PredY → PredX maps (Q,Y) to (f−1(Q), X). Products and coproducts in
a fibre PredX correspond to intersection and union, respectively. Products and
coproducts in the total category E are simply computed as in Set. The functor f∗

has a left adjoint
∐
f mapping (P,X) to the direct image (f(P), Y).

We note that predicates can alternatively be seen as functions X → 2. Reindex-
ing along a function f then simply becomes precomposition with f .

Example 3.3.2 (The relation bifibration). Similarly, we can consider the cate-
gory Rel whose objects are pairs of sets (R,X) with R ⊆ X × X and morphisms
f : (R,X) → (S, Y) are maps f : X → Y such that (f × f)(R) ⊆ S. The functor
p : Rel → Set mapping (R,X) to X is a fibration. The fibre RelX above X is the
complete lattice of relations on X ordered by inclusion. For f : X → Y in Set the
reindexing functor f∗ : RelY → RelX maps (R, Y) to ((f × f)−1(R), X). Its left
adjoint

∐
f is given by direct image, that is,

∐
f (R,X) = ((f × f)(R), Y).

Given fibrations p : E → A and p′ : E ′ → A′ and a functor B : A → A′, we call
B : E → E ′ a lifting of B if the following diagram commutes:

E B //

p

��

E ′

p′

��
A

B
// A′

(3.5)

Such a lifting B restricts to a functor BX : EX → E ′BX between fibres, for any X in
A. We sometimes omit the subscript X when it is clear from the context. A lifting
(B,B) is a fibration map if it maps Cartesian morphisms to Cartesian morphisms.
This means that there is an isomorphism

(Bf)∗ ◦B ∼= B ◦ f∗ (3.6)

for any A-morphism f . An important example for this thesis is the canonical rela-
tion lifting Rel(B), which is a fibration map whenever B preserves weak pullbacks.

3.3. Liftings and coinduction in a fibration 55

Lemma 3.3.3. For anyB : Set→ Set, the lifting (Rel(B), B) is a fibration map (from
the relation fibration to itself) if B preserves weak pullbacks.

The isomorphism (3.6) means that Rel(B) preserves inverse images if B pre-
serves weak pullbacks, that is, in that case the inclusion Rel(B)((f × f)−1(S)) ⊆
(Bf ×Bf)−1(Rel(B)(S)) is an equality (see Lemma 3.2.4). The inclusion holds for
any functor B; it is a special case of the following lemma.

Lemma 3.3.4. Let p : E → A and p′ : E ′ → A′ be fibrations, and assume B : E → E ′
is a lifting of some functor B : A → A′. For any morphism f : X → Y in A there is a
natural transformation

θ : BX ◦ f∗ ⇒ (Bf)∗ ◦BY : EY → E ′BX .

If p and p′ are bifibrations then there is another natural transformation

θ′ :
∐
Bf ◦BX ⇒ BY ◦

∐
f : EX → E ′BY .

Proof. To define θR on an object R in EY , we apply B to the p-Cartesian lifting
f̃R : f∗(R)→ R and use the universal property of the p′-Cartesian lifting (̃Bf)BR:

B(f∗(R))

θR

���
�
�

B(f̃R)

))RRRRRRRRRRRRRRR

(Bf)∗(B(R))
(̃Bf)B(R)

// B(R)

Naturality follows from the universal property of (̃Bf)BR and the definition of
reindexing functors.

The natural transformation θ′ can be defined as follows:∐
Bf ◦BX +3 ∐

Bf ◦BX ◦ f∗ ◦
∐
f∐

Bfθ
∐
f

��∐
Bf ◦ (Bf)∗ ◦BY ◦

∐
f

+3 BY ◦
∐
f

using the unit of the adjunction
∐
f a f∗ and the counit of the adjunction

∐
Bf a

(Bf)∗. (The way we obtain θ′ from θ is an instance of a more general construction:
θ′ is called the (adjoint) mate of θ.)

3.3.2 Coinductive predicates in a fibration

Let p : E → A be a fibration, and let B : A → A be a functor whose coalgebras
model the systems of interest. We show how to define functors on the fibre above

56 Chapter 3. Preliminaries

the carrier of a B-coalgebra, such that the coalgebras for those functors are the in-
variants that model coinductive properties of the B-coalgebra in the base category.
Following [HJ98], we then say a coinductive predicate is a final coalgebra in a fibre.

The crucial observation of this approach to coinductive predicates, is that we
can uniformly define a functor EX → EX for any B-coalgebra δ : X → BX, from a
given lifting B : E → E of B. For a coalgebra δ : X → BX it is defined as follows:

EX
BX // EBX

δ∗ // EX

A coalgebra R→ δ∗◦BX(R) is called a δ∗◦BX -invariant; sometimes we shall refer
only to the carrier R as an invariant and leave the transition structure implicit. The
final δ∗ ◦BX -coalgebra (if it exists) can be seen as the coinductive predicate deter-
mined by B on the coalgebra δ. Finality of this coinductive predicate amounts to a
proof principle: any invariant has a morphism to the coinductive predicate. For in-
stance, if the state space X is a set and EX is the lattice of predicates, this principle
means that the carrier of any invariant is contained in the coinductive predicate.
We refer to [HCKJ13] for more details on the existence of final coalgebras in a
fibre.

Example 3.3.5. Recall from Example 3.2.6 the functor F whose final coalgebra is
the divergence predicate on some coalgebra for the functor BX = Pω(A×X). We
define a lifting B : Pred→ Pred of B:

BX(P ⊆ X) = {S ⊆ Pω(A×X) | ∃y ∈ P.(τ, y) ∈ S}

Then, given any δ : X → BX, we consider the composition

PredX
BX // PredBX

δ∗ // PredX

where δ∗ is the reindexing functor, i.e., inverse image along δ. The functor δ∗ ◦BX
now coincides with F from Example 3.2.6. Here it is defined uniformly on any
B-coalgebra, based on a lifting of B that does not mention any concrete transition
system.

Example 3.3.6. The functor bδ : RelX → RelX , defined for a given coalgebra
δ : X → BX using relation lifting (see Section 3.2.1), decomposes as

RelX
Rel(B)X// RelBX

δ∗ // RelX

A δ∗ ◦ Rel(B)X -invariant is simply a bδ-invariant. Equivalently, it is a bisimulation
(Lemma 3.2.3).

Given a lifting B of B, we thus have a way of defining a functor on the fibre
EX above the carrier of any B-coalgebra. We now emphasize that this uniformly
defines a predicate on B-coalgebras, by showing that coalgebra homomorphisms
preserve invariants (and also reflect them, under a certain condition). The second
item appears as Proposition 3.11 in [HCKJ13], with a proof in the appendix.

3.4. Algebras 57

Proposition 3.3.7. Let p : E → A be a bifibration, B : E → E a lifting of a functor
B : A → A and let h : X → Y be a coalgebra morphism from δ : X → BX to
ϑ : Y → BY .

• If R is a δ∗ ◦BX -invariant, then
∐
h(R) is a ϑ∗ ◦BY -invariant.

• If S is a ϑ∗ ◦ BY -invariant and (B,B) is a fibration map, then h∗(S) is a
δ∗ ◦BX -invariant.

Proof. Since h is a coalgebra homomorphism, we have Bh ◦ δ = ϑ ◦ h. Thus

δ∗ ◦ (Bh)∗ ∼= (Bh ◦ δ)∗ = (ϑ ◦ h)∗ ∼= h∗ ◦ ϑ∗ . (3.7)

Using the unit of the adjunction
∐
Bh a (Bh)∗ and the counit of

∐
h a h∗ we

construct the mate of the above natural transformation (read from left to right):∐
h ◦ δ∗ =⇒

∐
h ◦ δ∗ ◦ (Bh)∗ ◦

∐
Bh =⇒

∐
h ◦ h∗ ◦ ϑ∗ ◦

∐
Bh =⇒ ϑ∗ ◦

∐
Bh .

We can use this to construct a natural transformation

γ :
∐
h ◦ δ∗ ◦BX =⇒ ϑ∗ ◦

∐
Bh ◦BX =⇒ ϑ∗ ◦BY ◦

∐
h

where the second part is given by Lemma 3.3.4. Then any δ∗ ◦ B-invariant, that
is, a coalgebra R → δ∗ ◦ BX(R) in EX , yields a coalgebra (invariant)

∐
h(R) →

ϑ∗ ◦BY ◦
∐
h(R) in EY , simply by applying

∐
h and the natural transformation γ.

For the second item, we construct a natural isomorphism

h∗ ◦ ϑ∗ ◦BY ∼= δ∗ ◦ (Bh)∗ ◦BY ∼= δ∗ ◦BX ◦ h∗

using (3.7) and the fact that (B,B) is a fibration map. Then, given an invariant
S → ϑ∗ ◦BY (S), we apply the isomorphism to get the invariant h∗(S)→ h∗ ◦ ϑ∗ ◦
BY (S) ∼= δ∗ ◦BX ◦ h∗(S).

As stated in Lemma 3.2.3, a relation R is a bisimulation on a coalgebra δ pre-
cisely if it is a δ∗ ◦ Rel(B)-invariant. Thus, the first item of the above Proposi-
tion 3.3.7 is a generalization of the fact that coalgebra homomorphisms preserve
bisimilarity (Lemma 3.1.3), for B instantiated to the canonical relation lifting
Rel(B) (Lemma 3.1.3 mentions two homomorphisms rather than one; this can
also be accommodated in the current setting by choosing a slightly different fi-
bration). Moreover, if B preserves weak pullbacks, then (Rel(B), B) is a fibration
map (Lemma 3.3.3). Hence, a special case of the second item is that bisimulations
are preserved by inverse image along coalgebra homomorphisms, whenever the
functor B preserves weak pullbacks.

3.4 Algebras

In this thesis, algebras play an important role to model coalgebras whose carrier
has algebraic structure; for example, the set of closed terms over some signature.

58 Chapter 3. Preliminaries

Other examples include automata over sets or linear combinations of states, which
arise in determinization constructions.

An algebra for a functor T : C → C, or T -algebra, is a pair (X,α) where X is
an object in C and α : TX → X is a morphism. We call X the carrier and α the
algebra structure. An (algebra) homomorphism from α : TX → X to β : TY → Y
is a function h : X → Y such that h ◦ α = β ◦ Th. The category of algebras and
their homomorphisms is denoted by T -alg.

An initial T -algebra is an initial object in the category T -alg. Thus, given an
initial T -algebra (A, κ) there exists, for each T -algebra (X,α) a unique algebra
homomorphism from (A, κ) to (X,α). We call such a morphism the inductive ex-
tension of (X,α). Similar to the case of final coalgebras, initial algebras exist under
mild conditions on the functor.

A signature Σ is a (possibly infinite) set of operator names σ ∈ Σ with (finite)
arities |σ| ∈ N. Equivalently, it is a polynomial functor on Set:

ΣX =
∐
σ∈Σ

{σ} ×X |σ| ∼= {σ(x1, . . . , x|σ|) | σ ∈ Σ and ∀i. xi ∈ X}

(Σ(f : X → Y))(σ(x1, . . . , xn)) = σ(f(x1), . . . , f(xn))

(3.8)

A Σ-algebra coincides with the standard notion of an interpretation of the signature
Σ: a set X together with a function of type X |σ| → X for every operator σ (see
also Section 2.3). The carrier of the initial Σ-algebra is given by the set of all closed
terms over the signature.

3.4.1 Monads

A monad is a triple T = (T, η, µ) where T : C → C is a functor, and η : Id ⇒ T and
µ : TT ⇒ T are natural transformations called unit and multiplication respectively,
such that the following diagrams commute:

T
ηT +3

BBBBBBBB

BBBBBBBB TT

µ

��

T

||||||||

||||||||
Tηks

T

TTT

µT

��

Tµ +3 TT

µ

��
TT µ

+3 T

(3.9)

An Eilenberg-Moore algebra for T (or T -algebra, or algebra for the monad T) is a
T -algebra α : TX → X such that the following diagram commutes:

X
ηX //

CCCCCCCC

CCCCCCCC TX

α

��

TTX
Tαoo

µX

��
X TXα
oo

A T -algebra homomorphism is simply a T -algebra homomorphism. We denote the
category of T -algebras and their homomorphisms by T -Alg, and the associated
forgetful functor by U : T -Alg→ C.

3.4. Algebras 59

Throughout this thesis we often use T to denote a monad and T to denote a
functor. Accordingly, a T -algebra is an (Eilenberg-Moore) algebra for a monad,
whereas a T -algebra is an algebra for a functor.

Given any C-object X, the algebra (TX, µX) satisfies a universal property: for
any T -algebra (A,α) and any arrow f : X → A, there is a unique algebra homo-
morphism f] : TX → A such that f] ◦ ηX = f , given by f] = α ◦ Tf .

Let (T, η, µ) and (K, θ, ν) be monads. A monad morphism is a natural transfor-
mation σ : T ⇒ K such that the following diagram commutes:

Id
η +3

θ

�$
@@@@@@@

@@@@@@@ T

σ

��

TT
µks

σσ

��
K KKν
ks

(3.10)

where σσ = Kσ ◦ σT = σK ◦ Tσ.

Example 3.4.1. We list a few examples of monads.

1. The powerset functor P is a monad, with unit η : Id ⇒ P and multiplication
µ : PP ⇒ P given by:

ηX(x) = {x} and µX(S) =
⋃
U∈S

U .

The finite powerset functor Pω extends to a monad in a similar way.

2. Given a semiring S, the functorM extends to a monad, by taking

ηX(x)(y) =

{
1 if x = y

0 otherwise
µX(ϕ)(x) =

∑
ψ∈SX

ϕ(ψ) · ψ(x)

The case of Pω is obtained by taking the Boolean semiring. Notice that µ is
well-defined since its argument ϕ has finite support, by definition ofM.

3. Suppose Σ is a polynomial functor representing a signature (3.8). Consider
the functor Σ∗, which maps a set X to the set of terms over Σ with variables
in X, as given by the grammar t ::= x | σ(t1, . . . , t|σ|), where x ranges over
X and σ ranges over the operator names. Given f : X → Y , the function
Σ∗f : Σ∗X → Σ∗Y is defined by substitution. The functor Σ∗ extends to a
monad, where the multiplication µ glues terms over terms, and the unit η
interprets a variable as a term. This monad is defined properly below; it is
called the free monad for Σ.

Let Σ: C → C be an arbitrary functor. A free Σ-algebra for a C-object X is an
initial Σ + X-algebra. The existence of free algebras for every object X amounts
to the existence of a left adjoint F to the forgetful functor U : Σ-alg → C. It is a
standard fact in category theory that an adjunction yields a monad; we spell out

60 Chapter 3. Preliminaries

some of the details. Suppose a left adjoint F to U exists, let Σ∗ = UF : C → C
and let η : Id ⇒ Σ∗ be the unit of the adjunction. The functor F induces a natural
transformation κ : ΣΣ∗ ⇒ Σ∗ such that (the copairing of)

ΣΣ∗X
κX // Σ∗X X

ηXoo (3.11)

is the free Σ-algebra for X. This means that for any Σ-algebra (Y, α) and any
f : X → Y there exists a unique homomorphism f] as in the following diagram:

ΣΣ∗X
Σf] //

κX

��

ΣY

α

��
Σ∗X

f] //____ Y

X

ηX

OO

f

::vvvvvvvvvv

Then the free monad for Σ is defined as (Σ∗, η, µ) where η is the unit of the adjunc-
tion, and µ is defined on a component X as the unique morphism µX : Σ∗Σ∗X →
Σ∗X such that µX ◦ ηΣ∗X = id.

Example 3.4.2. Suppose Σ∗ is the (underlying functor of the) free monad for Σ
arising from a signature, as described in Example 3.4.1 (3). The fact that Σ∗X is
a free Σ-algebra amounts to the following: given any Σ-algebra A, there is a one-
to-one correspondence between maps f : X → A and algebra homomorphisms
f] : Σ∗X → A. Here f can be viewed as a variable assignment, and f] as its
inductive extension to terms.

Suppose (Σ∗, η, µ) is the free monad for a functor Σ. Any Σ-algebra α : ΣX →
X then yields an Eilenberg-Moore algebra α̂ : Σ∗X → X, defined by the unique
extension of idX to an algebra morphism from Σ∗X to X. In fact, this construction
yields an isomorphism between the category Σ-alg of algebras for the functor Σ
and the category Σ∗-Alg of algebras for the free monad Σ∗.

3.5 Bialgebras and distributive laws

Bialgebras consist of an algebra and a coalgebra structure over a common carrier.
The interaction between algebra and coalgebra can be captured by distributive laws.
These provide enough structure to study operational semantics, determinization
and recursive equations in a systematic manner; see [TP97, Bar04, Kli11, JSS12]
for more information.

Let T,B : C → C be functors. A distributive law of T over B is a natural trans-
formation λ : TB ⇒ BT . This is the simplest type of distributive law, and we
sometimes refer to it as a distributive law between functors. Given such a λ, a

3.5. Bialgebras and distributive laws 61

λ-bialgebra is a triple (X,α, δ) so that α : TX → X is a T -algebra, δ : X → BX is a
B-coalgebra and the following diagram commutes:

TX
α //

Tδ

��

X
δ // BX

TBX
λX

// BTX

Bα

OO

(3.12)

A λ-bialgebra homomorphism is a map that is both an algebra and a coalgebra
homomorphism. Any distributive law defines liftings of T and B:

B-coalg
T //

��

B-coalg

��
C

T
// C

T -alg
B //

��

T -alg

��
C

B
// C

defined on objects by

T (X, δ) = (TX, λX ◦ Tδ) B(X,α) = (BX,Bα ◦ λX)

Notice that (3.12) commutes iff δ is a B-coalgebra with carrier (X,α) iff α is a
T -algebra with carrier (X, δ). Indeed, the category of λ-bialgebras is isomorphic to
the category of B-coalgebras and the category of T -algebras.

If B has a final coalgebra (Z, ζ), we can use T and coinduction to construct a
bialgebra on Z:

TZ

Tζ

��

α //____ Z

ζ

��

TBZ

λZ

��
BTZ

Bα
// BZ

This bialgebra is final in the category of λ-bialgebras.

Lemma 3.5.1. Let λ : TB ⇒ BT be a distributive law (between functors). The final
coalgebra (Z, ζ) lifts to a final λ-bialgebra.

Similarly, if T has an initial algebra (A, κ) then we can lift it to an initial λ-
bialgebra, see, e.g., [Kli11] for details. Instead of spelling this out, we will consider
initial bialgebras and their properties for a more general type of distributive law in
the next subsection.

62 Chapter 3. Preliminaries

3.5.1 Distributive laws of monads over (copointed) functors

Let T = (T, η, µ) be a monad. A distributive law of T over B is a natural transfor-
mation λ : TB ⇒ BT such that the following diagrams commute:

B
ηB +3

Bη �%
CCCCCCC

CCCCCCC TB

λ

��
BT

TTB

µB

��

Tλ +3 TBT
λT +3 BTT

Bµ

��
TB

λ
+3 BT

A distributive law λ as above induces a lifting B : T -Alg → T -Alg of B to the
category of Eilenberg-Moore algebras for the monad T . In fact, there is a one-
to-one correspondence between distributive laws λ as above and liftings of B to
T -Alg [Joh75, TP97].

Suppose λ is a distributive law of T over B. Any coalgebra δ : X → BTX
can then be extended to a homomorphism δ] : (TX, µX) → B(TX, µX) so that
δ] ◦ ηX = δ. Notice that δ] is defined by

TX
Tδ // TBTX

λTX // BTTX
BµX // BTX (3.13)

This yields another lifting T̂ : TB-coalg → B-coalg of T . Now, consider the coin-
ductive extension below:

X

δ

��

ηx // TX

δ]

{{vvvvvvvvv
h //___ Z

ζ

��
BTX

Bh
// BZ

(3.14)

Since the final B-coalgebra lifts to a final B-coalgebra (similar to Lemma 3.5.1),
the coinductive extension h is an algebra homomorphism. This can be interpreted
as stating that the semantics is compositional, in the sense that behavioural equiv-
alence on δ] is a congruence.

The above use of distributive laws to turn TB-coalgebras into B-coalgebras
(and obtaining a semantics from the coinductive extension) is sometimes inter-
preted as a general way of solving corecursive equations (e.g., [Bar04, Jac06b]); it
is also called the generalized powerset construction [SBBR13, JSS12].

Example 3.5.2 ([SBBR13, JSS12]). In Section 3.1.1 we have seen informally how
to determinize non-deterministic automata. This construction arises from a dis-
tributive law λ : Pω(2× IdA)⇒ 2× (P−)A of the powerset monad over the functor
2× IdA, given by

λX(S) =

 ∨
(o,t)∈S

o, λa.
⋃

(o,t)∈S

t(a)

 .

3.5. Bialgebras and distributive laws 63

Spelling out the details of the construction in Equation 3.13 yields the classical
powerset construction, as in Section 3.1.1. The composition h ◦ ηX in (3.14) is
the usual language semantics of non-deterministic automata (obtained via deter-
minization).

Similarly, the determinization of weighted automata arises from a distributive
law λ : MB ⇒ BM where BX = S×XA and λ is defined by

λX

(∑
ri(oi, ti)

)
=
(∑

ri · oi, λa.
∑

ri · ti(a)
)
.

The composition h ◦ ηX in (3.14) maps a state to the weighted language that it
accepts, see [JSS12, BBB+12].

There is yet another type of distributive law, which is particularly suitable for
operational semantics, as we will see below. To define it we need the notion of a
copointed functor, which is a pair (B, ε) where B : C → C is an endofunctor and
ε : B ⇒ Id a natural transformation. A coalgebra for a copointed functor (B, ε) is
a B-coalgebra (X, δ) such that εX ◦ δ = id. We will frequently consider copointed
functors (B × Id, π2); such a functor is called the cofree copointed functor for B. It
is easy to see that B-coalgebras are in one-to-one correspondence to coalgebras for
(B × Id, π2). Now, a distributive law of a monad (T, η, µ) over a copointed functor
(B, ε) is a distributive law λ of (T, η, µ) over B such that, additionally, the axiom

TB

λ

��
Tε

�%
BBBBBBB

BBBBBBB

BT
εT
+3 T

is satisfied. (We note that this can be further generalized by considering distributive
laws of monads over comonads; for a formal definition see, e.g., [Kli11].)

3.5.2 Abstract GSOS

In this section we consider abstract GSOS, which provides specification formats
for defining operations on coalgebras, and allows to study operational semantics
in a general fashion. It is a generalization of GSOS, which is a syntactic format
for transition system specifications (see Example 3.5.4 below). An abstract GSOS
specification of Σ over B is a natural transformation ρ : Σ(B× Id)⇒ BΣ∗. The fol-
lowing result [TP97] states that distributive laws of monad over copointed functor
can be presented by abstract GSOS specifications.

Lemma 3.5.3. There is a one-to-one correspondence between abstract GSOS specifi-
cations ρ of Σ over B and distributive laws ρ† of the free monad Σ∗ over the cofree
copointed functor B × Id.

64 Chapter 3. Preliminaries

For a full proof, see [LPW04, Bar04]. Given ρ, ρ† is defined on a component X
using initiality:

ΣΣ∗(BX ×X)

κBX×X

��

Σρ†X // Σ(BΣ∗X × Σ∗X)

〈ρΣ∗X ,Σπ2〉
��

BΣ∗Σ∗X × ΣΣ∗X

BµX×κX
��

Σ∗(BX ×X)
ρ†X // BΣ∗X × Σ∗X

BX ×X

ηBX×X

OO

BηX×ηX

44iiiiiiiiiiiiiiiii

(3.15)

A model of ρ is a triple (X,α, δ) where α : ΣX → X is a Σ-algebra and δ : X →
BX a B-coalgebra, such that the diagram

ΣX
α //

Σ〈δ,id〉
��

X
δ // BX

Σ(BX ×X)
ρX

// BΣ∗X

Bα̂

OO

commutes. There is a one-to-one correspondence between models for ρ and ρ†-
bialgebras; more precisely, a triple (X,α, δ) is a model of ρ iff (X, α̂, 〈δ, id〉) is a
ρ†-bialgebra. Based on this correspondence, it is easy to establish that behavioural
equivalence on (the coalgebra part of) any ρ-model is a congruence. The ρ-model
corresponding to the initial ρ†-bialgebra is sometimes referred to as the operational
model of ρ. We consider a few examples of abstract GSOS for particular choices
of the behaviour functor B; for many other instances of abstract GSOS, see (the
references in) [Kli11].

Example 3.5.4. Abstract GSOS is a generalization of GSOS, a format for transition
system specifications introduced in [BIM95]. Given a signature, a GSOS rule for an
operator σ of arity n is of the form

{xij
aj−→ yj}j=1..m {xik

bk
6→}k=1..l

σ(x1, . . . , xn)
c→ t

(3.16)

where m is the number of positive premises, l is the number of negative premises,
and a1, . . . , am, b1, . . . , bl, c ∈ A are labels. The variables x1, . . . , xn, y1, . . . , ym are
pairwise distinct, and t is a term over these variables.

GSOS rules for a signature Σ induce abstract GSOS specifications of Σ over the
functor BX = (PωX)A of labelled transition systems. Conversely, every GSOS

3.5. Bialgebras and distributive laws 65

specification arises from an abstract GSOS specification. This correspondence was
first observed in [TP97], and proved in detail in [Bar04]; see also [Kli11] for a
detailed explanation. The unique ρ-model on the initial algebra corresponds to the
supported model of a GSOS specification. The well-known fact that bisimilarity on
the supported model of a GSOS specification is a congruence, thus follows from
the abstract underlying theory of distributive laws.

A simple example of a GSOS specification is given by the parallel composition
operation. Let A = N ∪N ∪ {τ} where N is a set of labels and N = {a | a ∈ N};
we let a = a. The parallel composition is then defined by the following rules:

x
a−→ x′

x|y a−→ x′|y
y
a−→ y′

x|y a−→ x|y′
x

a−→ x′ y
a−→ y′

x|y τ−→ x′|y′

We define this as an abstract GSOS specification ρ : Σ((Pω−)A × Id) ⇒ Pω(Σ−)A,
where ΣX = X × X (we model a binary operator). Then, on a component X,
ρX : ((PωX)A ×X)× ((PωX)A ×X)→ (Pω(Σ∗X))A is given by

ρ(f, x, g, y)(τ) ={(x′|y) | x′ ∈ f(τ)} ∪ {(x|y′) | y′ ∈ g(τ)}
∪ {(x′|y′) | x′ ∈ f(a) and y′ ∈ g(a)}

and for any a ∈ A with a 6= τ :

ρ(f, x, g, y)(a) = {(x′|y) | x′ ∈ f(a)} ∪ {(x|y′) | y′ ∈ g(a)} .

Notice that the carrier of the operational model of ρ is empty; this is because we
did not add any constants to the signature and the specification. If we do, then the
operational model will be a transition system whose states are the terms built from
these constants and the parallel operator, and where the behaviour of a term p|q is
dictated by the GSOS rules above.

Example 3.5.5. Behavioural differential equations for streams, such as those de-
fined in Section 3.1.1, can be presented by abstract GSOS specifications of Σ over
BX = A × X, where Σ is the signature functor representing the syntax. The
precise format and definitions are well explained in [HKR14]. For example, to
define the operations of sum, convolution product and the constants [r] we take
ΣX = X ×X +X ×X + R and define ρ : Σ((R× Id)× Id)⇒ R× Σ∗ by cases:

ρ
[r]
X = (r, [0])

ρ+
X((a, x′, x), (b, y′, y)) = (a+ b, x′ + y′)

ρ×X((a, x′, x), (b, y′, y)) = (a · b, (x′ × y) + (a× y′))

The shuffle product is also easily defined this way. The shuffle inverse is a bit more
problematic, since it is not always defined. One ad-hoc way of solving this is by
just assigning it some fixed constant value in those cases.

The operational model of ρ then consists of the closed terms over Σ, and its
coalgebra structure is defined by induction according to ρ. The coinductive exten-
sion yields the semantics, and this is compositional with respect to the algebraic
structure induced on the final coalgebra.

66 Chapter 3. Preliminaries

Similarly, the format of behavioural differential equations for deterministic au-
tomata presented in Definition 2.3.3 induces GSOS specifications for the functor
BX = 2×XA. We did not formally prove the converse, i.e., that every such spec-
ification arises from an abstract GSOS specification, although this seems rather
likely. The format of behavioural differential equations in Definition 2.3.3 thus
consititutes a concrete, syntactic presentation of GSOS specifications for determin-
istic automata.

The GSOS format for streams and the one for deterministic automata give rise
to specific types of behavioural differential equations. BDEs can be defined more
generally, for instance involving second derivative, which can not be expressed in
these formats. The advantage of (abstract) GSOS is that it is quite expressive and
covers most examples encountered in the literature, while these specifications are
still well-behaved: they give rise to a compositional semantics, and have distribu-
tive laws and bialgebras as a solid underlying mathematical theory.

Chapter 4

Bisimulation up-to

The theory of coalgebras provides bisimilarity as a fundamental notion of equiva-
lence between systems. In this chapter, we introduce enhancements of the proof
technique for bisimilarity at this abstract level, by providing a general account of
bisimulation up-to techniques for arbitrary coalgebras. We show the use of these
up-to techniques by instantiating them to (non)deterministic automata, weighted
automata and stream systems.

The main challenge is to provide generic up-to techniques that are sound, mean-
ing that they can safely be used for proving bisimilarity. One difficulty is that
sound functions do not compose, thus obstructing a modular approach to proving
the soundness of up-to techniques in terms of their basic constituents. This is-
sue was addressed by Sangiorgi [San98] and Pous [Pou07, PS12], who introduced
up-to techniques in the setting of coinduction in a lattice. The central feature in
the framework of [Pou07] is the notion of compatible functions, defining a class
of sound enhancements that is closed under composition. By instantiating this
framework to coalgebraic bisimilarity, we obtain compatibility as a modular way of
proving soundness.

The first up-to technique that appeared in the literature is Milner’s bisimulation
up to bisimilarity [Mil83]. We show that this is compatible whenever the behaviour
functor under consideration preserves weak pullbacks. The equivalence closure is
also useful as an up-to technique, and its compatibility depends on weak pullback
preservation as well. In the presence of algebraic structure on the state space, the
notion of bisimulation up to context becomes relevant; we show that this is compat-
ible whenever the coalgebraic and algebraic structure together form a λ-bialgebra.
This implies, for instance, that bisimulation up to context is sound on the supported
model of any GSOS specification, which is more general than the De Simone format
considered in [San98]. Moreover, our compatibility results can be combined; for
instance, the compatibility of the congruence closure follows from that of the equiv-
alence and contextual closure. The soundness of bisimulation up-to techniques for
languages, as considered in Chapter 2, is an immediate consequence.

If the behaviour functor under consideration does not preserve weak pullbacks,

67

68 Chapter 4. Bisimulation up-to

then one may be interested in behavioural equivalence rather than bisimilarity (if
the functor preserves weak pullbacks then these two coincide, see Section 3.1).
This is the case, for example, for certain weighted transition systems [GS01, Kli09,
BBB+12] and for neighbourhood structures used in modal logic [HKP09]. We
conclude this chapter with a treatment of up-to techniques for behavioural equiv-
alence, and show in particular the compatibility of the contextual closure and the
equivalence closure.

Throughout this chapter we only consider coalgebras in the category Set of sets
and functions. Most of the technical results are a special case of more general
results on coinductive up-to techniques, presented in Chapter 5 of this thesis. The
current chapter explains the essentials of up-to techniques for the fundamental
coinductive predicate of coalgebraic bisimilarity, requiring only basic knowledge of
category theory.

Outline. The next section contains the definition of bisimulation up-to. The main
instances of up-to techniques as well as a number of example proofs are in Sec-
tion 4.2. Section 4.3 is a short overview of Pous’s framework. This is instantiated
in Section 4.4 to prove the main soundness results. Section 4.5 treats behavioural
equivalence up-to. In Section 4.6 a short summary of the soundness results is pro-
vided.

4.1 Progression and bisimulation up-to

The definition of bisimulation up-to on labelled transition systems can be stated
conveniently in terms of progression [PS12], which we generalize to a coalgebraic
setting as follows.

Definition 4.1.1. For a coalgebra δ : X → BX and relations R,S ⊆ X × X, we
say R progresses to S if there exists a function γ : R → BS making the following
diagram commute:

X

δ

��

R
π1oo

γ

��

π2 // X

δ

��
BX BS

Bπ1

oo
Bπ2

// BX

We recover the standard definition of a bisimulation on a single coalgebra (Sec-
tion 3.1) by taking R = S, i.e., a relation R that progresses to itself. Progression
allows to define bisimulation up-to, and the crucial associated notion of soundness.

Definition 4.1.2. Let δ : X → BX be a coalgebra and g : P(X ×X)→ P(X ×X)
be a function. A relation R is a bisimulation up to g if R progresses to g(R), i.e., if

4.2. Examples 69

there is a function γ : R→ B(g(R)) making the following diagram commute:

X

δ

��

R
π1oo

γ

��

π2 // X

δ

��
BX B(g(R))

Bπ1

oo
Bπ2

// BX

We say that g is (δ)-sound if the following implication holds, for any R ⊆ X ×X:

if R is a bisimulation up to g then R ⊆ ∼δ ,

that is, g is sound if every bisimulation up to g is contained in bisimilarity.

Informally, to check that R is a bisimulation up to g, the derivatives or next
states need not be related by R again, but by g(R). Depending on g(R), which in
most examples is a bigger relation than R, this is a weaker requirement than the
usual conditions for showing R to be a bisimulation. However, we only obtain a
valid proof principle for bisimilarity if g is sound: then, to prove that two states are
bisimilar, it suffices to relate them by a bisimulation up to g. Therefore, our main
aim is to find useful functions g that are sound.

Not every function is sound; for a simple example, take the function g that maps
every relation R on X to the Cartesian product X ×X. Then, a relation R on the
states of a transition system is a bisimulation up to g if for each (x, y) ∈ R and each
label a: there is x′ such that x a−→ x′ if and only if there is y′ such that x a−→ y′.
Clearly, this g is not sound.

4.2 Examples

We introduce the most important instances of bisimulation up-to for a variety of
systems. In each case, the up-to technique under consideration is sound (under
certain assumptions), which follows from results in subsequent sections of this
chapter. Thus, all of these examples can be seen as actual proofs of bisimilarity.
More details on the types of coalgebras under consideration and their associated
notions of bisimulation can be found in Example 3.1.1 and Example 3.1.2.

Bisimulation up to equivalence

Consider the function eq mapping a relation R to its equivalence closure eq(R). A
bisimulation up to eq is also called a bisimulation up to equivalence.

Example 4.2.1. Given a coalgebra δ : X → X + 1, a relation R on X is a bisimula-
tion up to equivalence if for all (x, y) ∈ R: either δ(x) = ∗ = δ(y), or (δ(x), δ(y)) ∈
eq(R). This is different than a bisimulation, which requires (δ(x), δ(y)) ∈ R rather

70 Chapter 4. Bisimulation up-to

than (δ(x), δ(y)) ∈ eq(R) (Example 3.1.2). Consider the following coalgebras and
relations:

a
''
bhh c

��>>>>>>>

e

@@��������
doo

g

��======== h

���������

i
{(a, b)} {(c, d), (d, e)} {(g, h)}

All three relations are bisimulations up to equivalence, whereas none of them are
actual bisimulations. Consider, for example, the relation {(a, b)}: we have δ(a) = b
and δ(b) = a, but (b, a) 6∈ {(a, b)}. However, the pair (b, a) is in the least equiva-
lence relation containing {(a, b)}.

The equivalence closure decomposes as

eq = tra ◦ sym ◦ rfl

where tra is transitive closure, sym is symmetric closure and rfl is reflexive closure.
The relation {(a, b)} from the above example is a bisimulation up to sym, {(g, h)}
is a bisimulation up to rfl and {(c, d), (d, e)} is a bisimulation up to tra ◦ sym.

Example 4.2.2. Consider the deterministic automaton below, with final states
y, z, v, w and transitions given by the solid arrows. The relation given by the four
dashed lines together with the dotted line (y, w) is a bisimulation.

x
a,b //

�
�
�
�
� y

a,b //

�
�
� z a,bdd

�
�
�

v
v

v
v

v
v

v

a,b
**
w

a,b
oo

u

a 44iiiiiiiii b

77

The relation R denoted by the four dashed lines is not a bisimulation, since x b−→ y

and u
b−→ w but (y, w) 6∈ R. However, R is a bisimulation up to equivalence,

since the pair (y, w) is in eq(R). Hopcroft and Karp’s algorithm [HK71] exploits
this technique for checking equivalence of deterministic automata: rather than
exploring n2 pairs of states (where n is the number of states), the algorithm visits
at most n pairs (that is the number of equivalence classes) (cf. [BP13]).

Bisimulation up to bisimilarity

Let ∼ be the bisimilarity relation of a given coalgebra δ : X → BX, and consider
the bisimilarity closure function bis : P(X ×X)→ P(X ×X) defined by

bisδ(R) = ∼ ◦R ◦ ∼ .

The function bisδ composes a relation with bisimilarity on both sides. In the sequel
we sometimes drop the subscript δ and write bis, if the coalgebra under considera-
tion is clear from the context.

4.2. Examples 71

A bisimulation up to bis is called a bisimulation up to bisimilarity. This is the
very first up-to technique that appeared in the literature, in the context of labelled
transition systems [Mil83].

Example 4.2.3. In this example, we prove that the stream [1] = (1, 0, 0, . . .) is the
unit for the shuffle product ⊗, that is, σ ⊗ [1] ∼ σ. Let T be the set of terms given
by the grammar t ::= t ⊗ t | t + t | [r], where [r] ranges over {[r] | r ∈ R}. As
explained in Section 3.1.1, together with the appropriate behavioural differential
equations, this induces a coalgebra 〈(−)0, (−)′〉 : T → R× T .

We make use of the relation R = {(σ⊗ [1], σ) | σ ∈ T}. For any σ ∈ T , we have
(σ⊗ [1])0 = σ0 · [1]0 = σ0. Further (σ⊗ [1])′ = σ′⊗ [1] +σ⊗ [1]′ = σ′⊗ [1] +σ⊗ [0];
this element is not related to σ′, so R is not a bisimulation. However given some
basic laws of stream calculus, in particular σ ⊗ [0] ∼ [0], σ + [0] ∼ σ and the fact
that ∼ is a congruence, we obtain

((σ′ ⊗ [1]) + (σ ⊗ [0])) ∼ ((σ′ ⊗ [1]) + [0]) ∼ (σ′ ⊗ [1]) R σ′

so R is a bisimulation up to bisimilarity (we use that ∼ is reflexive and transitive
on stream systems), proving that σ ⊗ [1] ∼ σ.

On a final coalgebra, bisimilarity implies equality, so bisimulation up to bisimi-
larity is not interesting there.

Bisimulation up to union

Given a fixed relation S, we define unS : P(X ×X)→ P(X ×X) by

unS(R) = R ∪ S .

A bisimulation up to unS , is called a bisimulation up to union with S or bisimulation
up to S-union. If R is a bisimulation up to union with S, then next states are related
either by R or by S. This technique is useful in combination with other ones, such
as the equivalence closure eq. For instance, any bisimulation up to bisimilarity is
also a bisimulation up to eq ◦ un∼.

Bisimulation up to context

If the state space of the coalgebra under consideration has algebraic structure, then
the notion of bisimulation up to context becomes relevant. Let T : Set → Set be a
functor. For a T -algebra (X,α), the contextual closure function ctxα : P(X ×X)→
P(X ×X) is defined using relation lifting (Section 3.2.1):

ctxα(R) = (α× α)(Rel(T)(R)) = {(α ◦ Tπ1(t), α ◦ Tπ2(t)) | t ∈ TR} . (4.1)

We call ctxα(R) the contextual closure of R. Whenever α is clear from the context
we simply write ctx(R). IfR is a bisimulation up to ctx then we callR a bisimulation
up to context. In many of the examples, T is the underlying functor of a monad,
and α is an algebra for the monad. However, the above definition does not require
this: α is simply an algebra for the functor T .

72 Chapter 4. Bisimulation up-to

Example 4.2.4. Let Σ∗ be the free monad for a polynomial functor representing
a signature, with multiplication µ : Σ∗Σ∗ ⇒ Σ∗ (Section 3.4). Given a relation
R ⊆ Σ∗X×Σ∗X, the contextual closure ctxµX (R) ⊆ Σ∗X×Σ∗X can be inductively
characterized by the following rules:

s R t

s ctx(R) t

si ctx(R) ti i = 1 . . . n

σ(s1, . . . , sn) ctx(R) σ(t1, . . . , tn)
for each σ ∈ Σ, |σ| = n

This slightly differs from the definition in [PS12] where the contextual closure is
defined as

ctx′(R) = {(C[s1, . . . sn], C[t1, . . . tn]) | C a context and for all i: (si, ti) ∈ R}

(a context C is a term with n ≥ 0 holes [·]i in it). In our case, ctx′ can be obtained as
ctx ◦ rfl, i.e., by precomposing ctx with the reflexive closure function rfl. To see the
difference, consider, for instance, the signature which has only a binary operator
+, and let R = {(x, y)}. Then the pair {(x + x, x + y)} is in ctx′(R) but not in
ctx(R).

Example 4.2.5. Every weighted automaton (X, 〈o, t〉) induces a coalgebra of the
form 〈o], t]〉 : MX → R × (MX)A, where MX is the set of linear combinations
with coefficients in R. The coinductive extension of 〈o], t]〉 maps a state x to the
weighted language it accepts (Example 3.5.2). Therefore, we can prove weighted
language equivalence between states x, y by proving that they are bisimilar on
〈o], t]〉. In this example, we prove bisimilarity by constructing a bisimulation up to
context, thus making use of the algebraic structure onMX.

Given a relation R ⊆MX ×MX, its contextual closure ctx(R) ⊆MX ×MX
(where the algebra is given by the multiplication of the monad M, see Exam-
ple 3.4.1) can be inductively characterized by the following rules:

v R w

v ctx(R) w

−
0 ctx(R) 0

v1 ctx(R) w1 v2 ctx(R) w2

v1 + v2 ctx(R) w1 + w2

v ctx(R) w r ∈ R
r · v ctx(R) r · w

Now given a weighted automaton 〈o, t〉 : X → R × (MX)A, a bisimulation up
to context is a relation R ⊆ MX × MX such that for all (v, w) ∈ R we have
o]1(v) = o]2(w) and for all a ∈ A: (t]1(v)(a), t]2(w)(a)) ∈ ctx(R).

As an example, consider the following weighted automaton:

x3 ↓ 0 a,b,1yy

x0 ↓ 0
a,1 //

b,1 66

x1 ↓ 1 a, 12yy
a,b, 12
��

b, 12

OO

x2 ↓ 1 a,b,1yy

y3 ↓ 0 a,b,1ww

y0 ↓ 0
a, 12 //

b,1 66

a, 12
((

y1 ↓ 1 a, 12ww
a, 12
��

b,1

OO

y2 ↓ 1 a,b,1ww

To prove that x0 and y0 are language equivalent, we need to prove that they are
bisimilar on the induced R× IdA-coalgebra. But a bisimulation containing (x0, y0)

4.2. Examples 73

has to be infinite, since it needs to contain the pairs shown below by the dashed
lines:

x0 ↓ 0
a //

�
�
� x1 ↓ 1

a //

�
�
�

1
2x1 + 1

2x2 ↓ 1
a //

�
�
�

1
4x1 + 3

4x2 ↓ 1
a //

�
�
�

. . .

�
�
�
�

y0 ↓ 0
a
// 1
2y1 + 1

2y2 ↓ 1
a
// 1
4y1 + 3

4y2 ↓ 1
a
// 1
8y1 + 7

8y2 ↓ 1
a
// . . .

However, the finite relation R = {(x0, y0), (x2, y2), (x3, y3), (x1,
1
2y1 + 1

2y2)} is a
bisimulation up to context: consider (x1,

1
2y1 + 1

2y2) (the other pairs are trivial)
and observe that we have the following related pairs:

x1
a //

R �
�
�

1
2x1 + 1

2x2

ctx(R)�
�
�

1
2y1 + 1

2y2 a
// 1
4y1 + 3

4y2

x1
b //

R �
�
�

1
2x3 + 1

2x2

ctx(R)�
�
�

1
2y1 + 1

2y2
b
// 1
2y3 + 1

2y2

Thus, the finite relation R is a bisimulation up to context. Since this technique
is sound (as we will see in Section 4.4), this suffices to prove that x0 and y0 are
bisimilar, and hence accept the same weighted language.

In the above example we used a finite bisimulation up to context to show
weighted language equivalence. Finite bisimulations up to context for weighted
automata are used in [Win15] to obtain a decidability result for weighted language
equivalence for a certain class of semirings.

Bisimulation up to congruence

Given a T -algebra α : TX → X, the congruence closure function cgrα : P(X×X)→
P(X ×X) is defined by

cgrα =
⋃
i≥0

(tra ∪ sym ∪ ctxα ∪ rfl)i

(cf. [BP13]) where ∪ is pointwise union. If R is a bisimulation up to cgrα, then we
call R a bisimulation up to congruence. The congruence closure and associated no-
tion of bisimulation up to congruence given in Definition 2.3.1 are a special case of
the above. (In fact, many of the examples in Chapter 2 do not use the equivalence
closure, and therefore are also examples of bisimulations up to context.)

Example 4.2.6. We consider weighted automata for the tropical semiring T =
(R ∪ {∞},min,∞,+, 0). In this semiring, the addition operation is given by the
function min having ∞ as neutral element. The multiplication is given by the
function + having 0 as neutral element.

74 Chapter 4. Bisimulation up-to

The weighted automaton (X, 〈o, t〉) given as follows:

x ↓ 0

a,2
,,

a,3

88y ↓ 0
a,2

ll z ↓ 0
a,2oo u ↓ 0 a,2

qq

induces the coalgebra (MX, 〈o], t]〉〉) which is partially depicted below (the tran-
sitions are given by the solid arrows, the dashed lines represent a relation).

x ↓ 0
a //

�
�
� min(2 + y, 3 + z) ↓ 2

a //

�
�
�

min(4 + x, 5 + y) ↓ 4
a //

�
�
�

. . .

�
�
�
�

u ↓ 0
a

// (2 + u) ↓ 2
a

// (4 + u) ↓ 4
a

// . . .

The states x and u are weighted language equivalent. To prove it we would need
an infinite bisimulation, since it should relate all the pairs of states linked by the
dashed lines in the above figure.

Given a relation R ⊆ MX ×MX, its congruence closure cgr (where the al-
gebra is given by the multiplication of the monad M, see Example 3.4.1) can be
characterized inductively by the following rules:

v R w

v cgr(R) w v cgr(R) v

v cgr(R) w

w cgr(R) v

u cgr(R) v cgr(R) w

u cgr(R) w

v1 cgr(R) w1 v2 cgr(R) w2

min(v1, v2) cgr(R) min(w1, w2)

v cgr(R) w r ∈ R ∪ {∞}
r + v cgr(R) r + w

Now consider the relation R = {(x, u), (min(2 + y, 3 + z), 2 + u)}. To prove that
R is a bisimulation up to congruence we only have to show that (min(4 + x, 5 +
y), 4 + u) ∈ cgr(R):

min(4 + x, 5 + y)
cgr(R) min(4 + u, 5 + y) ((x, u) ∈ R)
cgr(R) min(2 + min(2 + y, 3 + z), 5 + y) ((min(2 + y, 3 + z), 2 + u) ∈ R)
= 2 + min(2 + y, 3 + z)
cgr(R) 4 + u ((min(2 + y, 3 + z), 2 + u) ∈ R)

Note that R is not a bisimulation up to context, since (min(4 + x, 5 + y), 4 + u) /∈
ctx(R). Here transitivity is really necessary.

Bisimulation up to union, context and equivalence

A bisimulation up to eq ◦ ctx ◦ unS is called a bisimulation up to S-union, con-
text and equivalence. This extension of bisimulation up to context allows to relate
derivatives of R using ctx(R ∪ S) in “multiple steps”, similar to the case of up-to-
congruence.

4.3. Compatible functions 75

Example 4.2.7. Recall the operations of shuffle product and inverse from Sec-
tion 3.1.1, and let Twf be the set of well-formed terms over shuffle product and
inverse introduced there. We prove that the inverse operation is really the inverse
of shuffle product, that is, σ ⊗ σ−1 ∼ [1] for all σ ∈ Twf (Rω) such that σ0 6= 0.
We use that ⊗ is associative and commutative (so σ ⊗ τ ∼ τ ⊗ σ, etc.) and that
σ + (−σ) ∼ [0] (see, e.g., [Rut03]). Let

R = {(σ ⊗ σ−1, [1]) | σ ∈ Twf (Rω), σ0 6= 0} .

We can now establish that R is a bisimulation up to ∼-union, context and equiva-
lence. First we consider the initial values:

(σ ⊗ σ−1)0 = σ0 · (σ−1)0 = σ0 · (σ0)−1 = 1 = [1]0 .

Next, we relate the derivatives by eq(ctx(R ∪ ∼)):

(σ ⊗ σ−1)′ = σ′ ⊗ σ−1 + σ ⊗ (σ−1)′

= σ′ ⊗ σ−1 + σ ⊗ (−σ′ ⊗ (σ−1 ⊗ σ−1))

tra(ctx(∼)) (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ (σ ⊗ σ−1))

ctx(R ∪ ∼) (σ′ ⊗ σ−1) + (−(σ′ ⊗ σ−1)⊗ 1)

tra(ctx(∼)) [0] = [1]′

Since tra(ctx(∼)) ⊆ eq(ctx(R ∪ ∼)) and ctx(R ∪ ∼) ⊆ eq(ctx(R ∪ ∼)) we may
conclude that R is a bisimulation up to ∼-union, context, and equivalence. Notice
that R is not a bisimulation; establishing that it is a bisimulation up-to is much
easier than finding a bisimulation which contains R.

In the step above where we use ctx(R ∪ ∼), we could have used ctx(rfl(R)) in-
stead. Further, since in this example ∼ = tra(ctx(∼)), the above is also an example
of bisimulation up to context, reflexivity and bisimilarity, that is, a bisimulation up
to bis ◦ ctx ◦ rfl. (Any bisimulation up to context, reflexivity and bisimilarity is also
a bisimulation up to ∼-union, context and equivalence.)

4.3 Compatible functions

The above examples illustrate various up-to techniques available for bisimilarity.
Many of these techniques are combinations of simpler ones; for instance, the equiv-
alence closure is a composition of the transitive, symmetric and reflexive closure,
and the congruence closure is a pointwise union of compositions of the transitive,
symmetric, contextual and reflexive closure. Unfortunately, the soundness of a
composed function does not follow from its basic constituents: the class of sound
functions is not closed under composition. It is rather undesirable and sometimes
difficult to reprove soundness of every suitable combination from scratch.

This calls for a theory of enhancements which allows one to freely compose
them. Such a theory was developed in the setting of classical coinduction (Sec-
tion 3.2), at the level of complete lattices [Pou07, PS12]. In the current section,

76 Chapter 4. Bisimulation up-to

we recall the basic definitions and results of this theory. In the next section, we in-
stantiate it to prove soundness of coalgebraic bisimulation up-to in a modular way.
In Section 5.1, the framework is generalized to an abstract categorical setting.

Let f be a monotone function on a complete lattice L. Recall from Section 3.2
that the coinductive proof principle then asserts that, to prove that x ≤ gfp(f),
it suffices to prove that x ≤ f(x). Enhancements of the coinductive proof method
allow one to weaken the requirement that x is an f -invariant: rather than checking
x ≤ f(x), we would like to check x ≤ f(y) for some y which is possibly above x.
The key idea consists in using a function g to obtain this larger y out of x: y = g(x).
For instance, in the lattice of relations on a fixed set, we often consider functions
that add more pairs to the relation.

Definition 4.3.1. Let f, g : L→ L be monotone functions.

• An f -invariant up to g is an f ◦ g-invariant, i.e., a post-fixed point of f ◦ g.

• g is f -sound if all f -invariants up to g are below gfp(f), that is, if x ≤ f(g(x))
then x ≤ gfp(f).

• g is f -compatible if g ◦ f ≤ f ◦ g.

The notion of f -compatible function, which is the heart of the matter, is intro-
duced to get around the fact that f -sound functions cannot easily be composed.
Compatible functions satisfy two crucial properties: f -compatible functions are f -
sound (Theorem 4.3.2) and the composition of two f -compatible functions is again
an f -compatible function (Proposition 4.3.3).

Theorem 4.3.2. All f -compatible functions are f -sound.

Proof. Let f, g : L → L be monotone and suppose g is f -compatible, i.e., g ◦ f ≤
f ◦ g. Let x ≤ f(g(x)) be an f -invariant up to g; we need to prove that x ≤ gfp(f).

We first show that gi(x) ≤ f(gi+1(x)) for every i ∈ N, by induction on i. The
base case x ≤ f(g(x)) holds by the assumption that x is an f -invariant up to g.
Now suppose gi(x) ≤ f(gi+1(x)). Since g is monotone, this means gi+1(x) ≤
g(f(gi+1(x))), and since g is f -compatible we get

gi+1(x) ≤ g(f(gi+1(x))) ≤ f(g(gi+1(x))) = f(gi+2(x))

as desired.
Monotonicity of f gives gi(x) ≤ f(

∨
i∈N g

i(x)), so
∨
i∈N g

i(x) ≤ f(
∨
i∈N g

i(x)),
which means

∨
i∈N g

i(x) ≤ gfp(f), so x ≤
∨
i∈N g

i(x) ≤ gfp(f).

The main reason for the introduction of compatible functions is that they can be
constructed by combining other compatible functions, as stated by the next result.

Proposition 4.3.3. The following functions on L are f -compatible:

1. id—the identity function;

2. cstx—the constant-to-x function, for any f -invariant x;

4.4. Compatibility results 77

3. g ◦ h for any f -compatible functions g and h;

4.
∨
F for any set F of f -compatible functions.

In a lattice of relations, the last item states that compatible functions can also be
combined using pointwise union. There is another way of combining two functions
g and h on relations, using relational composition:

(g • h)(R) = g(R) ◦ h(R) (4.2)

This composition operator does not always preserve f -compatibility, but the fol-
lowing lemma gives a sufficient condition.

Proposition 4.3.4. If f : P(X ×X)→ P(X ×X) satisfies the following condition:

for all relations R,S ⊆ X ×X : f(R) ◦ f(S) ⊆ f(R ◦ S) (4.3)

then g • h is f -compatible for all f -compatible functions g and h.

This section is concluded with two lemmas that will be useful in the sequel.
The first one gives an alternative characterization of f -compatible functions. The
second lemma states that the coinductive predicate defined by f is closed under
any f -compatible function.

Lemma 4.3.5. A monotone function g is f -compatible iff for all x, y: x ≤ f(y) implies
g(x) ≤ f(g(y)).

Lemma 4.3.6. If g is f -compatible then g(gfp(f)) ≤ gfp(f).

4.4 Compatibility results

We instantiate the framework of the previous section to prove soundness of bisimu-
lation up-to techniques in a modular way, using the notion of compatible functions.
To this end, recall from Section 3.2.1 that, given a coalgebra δ : X → BX, one can
define the monotone function bδ(R) = (δ × δ)−1(Rel(B)(R)) on the complete lat-
tice of relations on X ordered by inclusion, so that bδ-invariants are precisely the
bisimulations on δ. Progression and bisimulation up-to can also be stated in terms
of this function, as an easy extension of Lemma 3.2.3.

Lemma 4.4.1. For any coalgebra δ : X → BX and for any relations R,S ⊆ X ×X:
R ⊆ bδ(S) if and only if R progresses to S. As a consequence, given any monotone
function g : P(X ×X)→ P(X ×X) on the lattice of relations,

R is a bisimulation up to g if and only if it is a bδ-invariant up to g .

Bisimilarity on δ coincides with the coinductive predicate defined by bδ (i.e., gfp(bδ)).

78 Chapter 4. Bisimulation up-to

Spelling out Definition 4.3.1, a monotone function g is bδ-compatible if

g ◦ bδ ⊆ bδ ◦ g .

As a consequence of Lemma 4.4.1 and the fact that compatible functions are sound
(Theorem 4.3.2), if g is bδ-compatible then it is sound in the sense of Defini-
tion 4.1.2, i.e., bisimulation up to g is a sound proof technique for bisimilarity.
Since compatible functions can be combined in various ways (Proposition 4.3.3), in
particular by function composition, the advantage of proving compatibility rather
than soundness is that it allows us to compositionally reason about the soundness
of bisimulation up-to.

The instances of bisimulation up-to introduced in Section 4.2 can be roughly di-
vided into three groups: (1) simple enhancements like up-to-union, (2) those that
involve relational composition, such as up-to-transitivity and up-to-bisimilarity,
and finally (3) up-to-context. Derived techniques such as up-to-congruence are
just combinations of these basic enhancements, so their compatibility follows from
proving the compatibility of their constituents.

In the remainder of this section, we show that functions (1) are compatible
for any coalgebra, functions (2) are compatible under a mild condition on the be-
haviour functor, and functions (3) are compatible in the presence of a λ-bialgebra.

Theorem 4.4.2. For any B-coalgebra (X, δ), the following are bδ-compatible:

1. unS—union with S, where S is a bisimulation on δ;

2. rfl—the reflexive closure;

3. sym—the symmetric closure.

Proof. By definition, unS is bδ-compatible if unS ◦ bδ ⊆ bδ ◦ unS . Instead of proving
this directly, we first decompose unS as

unS(R) = R ∪ S = id(R) ∪ cstS(R) .

By Proposition 4.3.3, id is bδ-compatible, and the union of compatible functions is
again compatible; so we only need to prove that the constant-to-S function cstS is
bδ-compatible. Since S is a bisimulation, it is a bδ-invariant, and thus by Proposi-
tion 4.3.3, the constant function cstS is indeed bδ-compatible.

For the compatibility of the reflexive closure, we use that the diagonal relation
on any coalgebra is a bisimulation [Rut00]. Since rfl = un∆X

, where ∆X is the
diagonal relation on X, rfl is bδ-compatible by the first item.

Let inv(R) = Rop . The symmetric closure sym is given by sym(R) = R ∪ Rop =
id(R) ∪ inv(R). Thus, by Proposition 4.3.3, we obtain bδ-compatibility of sym if we
prove that inv is bδ-compatible, i.e., that inv ◦ bδ ⊆ bδ ◦ inv. But this follows easily
from the fact that Rel(B)(Rop) = (Rel(B)(R))op (Lemma 3.2.4).

4.4. Compatibility results 79

4.4.1 Relational composition

Bisimilarity on coalgebras is not a transitive relation, in general. However, the mild
condition that the behaviour functor preserves weak pullbacks guarantees that it
is [Rut00]. Similarly, up-to techniques that are based on composition, such as
bisimulation up to transitivity, are not sound in general. In this section, we show
that weak pullback preservation is equivalent to the property (4.3) of Section 4.3.
This property implies that the composition operator • from Section 4.3 (Equa-
tion (4.2)) preserves compatibility. From this fact, compatibility of the transitive
closure and the bisimilarity closure can be derived.

First, we adapt an example from [AM89] to show that bisimulation up to bisim-
ilarity is not sound in general.

Example 4.4.3. Define the functor B : Set→ Set as

BX = {(x1, x2, x3) ∈ X3 | |{x1, x2, x3}| ≤ 2}
B(f)(x1, x2, x3) = (f(x1), f(x2), f(x3))

Consider the B-coalgebra with states X = {0, 1, 2, 0̃, 1̃} and transition structure

0 7→ (0, 1, 0) 0̃ 7→ (0, 0, 0) 2 7→ (2, 2, 2)
1 7→ (0, 0, 1) 1̃ 7→ (1, 1, 1)

Then 0 6∼ 1. To see this, note that in order for the pair (0, 1) to be contained in
a bisimulation R, there must be a transition structure on this relation which maps
(0, 1) to ((0, 0), (1, 0), (0, 1)). But this triple can not be in BR, because it consists
of three different elements. However, it is easy to show that 0 ∼ 2 and 1 ∼ 2: the
relation {(0, 2), (1, 2)} is a bisimulation.

The relation S = {(0̃, 1̃), (2, 2)} is not a bisimulation, since for that there should
be a function from S to BS mapping the elements as follows:

(0̃, 1̃) 7→ ((0, 1), (0, 1), (0, 1)) (2, 2) 7→ ((2, 2), (2, 2), (2, 2))

and ((0, 1), (0, 1), (0, 1)) is not contained in BS. However, since 0 ∼ 2 S 2 ∼ 1, the
triple ((0, 1), (0, 1), (0, 1)) is contained in B(∼ ◦ S ◦ ∼); so S is a bisimulation up
to bisimilarity. Thus, if up-to-bisimilarity is sound, then S ⊆ ∼ and consequently
0̃ ∼ 1̃. It follows that 0 ∼ 1, which is a contradiction.

The key to obtaining bδ-compatibility of functions that involve relational com-
position, is to assume that the behaviour functor B preserves weak pullbacks. Re-
call that a functor B : Set → Set preserves weak pullbacks if and only if Rel(B)
preserves composition of relations (Theorem 3.2.5). A further equivalent condi-
tion is that bisimulations are closed under composition.

Theorem 4.4.4. A functor B : Set → Set preserves weak pullbacks if and only if the
composition of two B-bisimulations is again a B-bisimulation.

80 Chapter 4. Bisimulation up-to

Rutten [Rut00] established the implication from left to right, and the reverse
implication is due to Gumm and Schröder [GS00]. Using Theorem 3.2.5 and The-
orem 4.4.4 we show that preservation of weak pullbacks coincides with the prop-
erty (4.3) of Section 4.3.

Proposition 4.4.5. B preserves weak pullbacks iff for any B-coalgebra (X, δ), bδ
satisfies (4.3), i.e., for all relations R,S : bδ(R) ◦ bδ(S) ⊆ bδ(R ◦ S).

Proof. Suppose B preserves weak pullbacks. Let (X, δ) be an B-coalgebra, R,S ⊆
X ×X relations, and (x, z) ∈ bδ(R) ◦ bδ(S), so there is some y such that (x, y) ∈
bδ(R) and (y, z) ∈ bδ(S). Then we have (δ(x), δ(y)) ∈ Rel(B)(R) and (δ(y), δ(z)) ∈
Rel(B)(S), so (δ(x), δ(z)) ∈ Rel(B)(R) ◦ Rel(B)(S). But by assumption and Theo-
rem 3.2.5 Rel(B) preserves composition, so Rel(B)(R)◦Rel(B)(S) = Rel(B)(R◦S).
Consequently (x, z) ∈ bδ(R ◦ S) as desired.

Conversely, suppose that (4.3) holds; then by Proposition 4.3.4, bδ-compatible
functions are closed under •. Let R,S be bisimulations, so the constant-to-R func-
tion cstR and the constant-to-S function cstS are both bδ-compatible by Proposi-
tion 4.3.3. By assumption cstR • cstS is bδ-compatible, so by Lemma 4.3.5 we have
R ◦ S ⊆ bδ(R ◦ S), and thus R ◦ S is a bisimulation. From Theorem 4.4.4 we
conclude that B preserves weak pullbacks. (In fact, we only considered bisimu-
lations on a single coalgebra, whereas the condition 2 of the theorem mentions
arbitrary bisimulations; however, it is easy to prove that, in Set, if bisimulations on
a single coalgebra compose then bisimulations on different coalgebras compose as
well [RBB+15]).

As a consequence of Proposition 4.3.4 and the above result, b-compatible func-
tions are closed under • if the behaviour functor preserves weak pullbacks.

Theorem 4.4.6. Let (X, δ) be a coalgebra for a functor B that preserves weak pull-
backs. The following functions are bδ-compatible:

1. tra—the transitive closure;

2. eq—the equivalence closure;

3. bisδ—the bisimilarity closure.

Proof. If B preserves weak pullbacks, then bδ-compatible functions are closed un-
der •, by Proposition 4.4.5 and Proposition 4.3.4.

For tra, inductively define the functions (−)•n as (−)•1 = id and (−)•n+1 =
id• (−)•n. We thus have (R)•1 = R and (R)•n+1 = R ◦R•n. We prove by induction
on n that (−)•n is bδ-compatible for any n ∈ N. The base case is bδ-compatibility
of id, which follows from Proposition 4.3.3. Further, if (−)•n is compatible then
(−)•n+1 = id • (−)•n is also compatible. Thus

tra =
⋃
n≥1

(−)•n

is a union of bδ-compatible functions, so by Proposition 4.3.3 it is bδ-compatible.

4.4. Compatibility results 81

The equivalence closure is eq = tra ◦ sym ◦ rfl, which is a composition of bδ-
compatible functions and therefore bδ-compatible.

For the bisimilarity closure bisδ we have

bisδ(R) = ∼ ◦R ◦ ∼ = cst∼ • id • cst∼ .

Since∼ is a bisimulation, cst∼ is bδ-compatible. The bδ-compatibility of bisδ follows
since bδ-compatible functions are closed under •, using the assumption.

4.4.2 Contextual closure

The contextual closure ctxα is defined with respect to a T -algebra α : TX → X
on the states of a coalgebra δ : X → BX, see (4.1) in Section 4.2. A first thought
may be that for compatibility of the contextual closure, it suffices if bisimilarity is
a congruence with respect to this algebra, i.e., that bisimilarity is closed under the
algebra structure. However, this is not even enough for the soundness of bisim-
ulation up to context [PS12]. As we show below, in order to prove that ctx is
compatible, it is sufficient to assume that (X,α, δ) is a λ-bialgebra for a distributive
law λ : TB ⇒ BT of the functor T over the functor B (thus, λ is simply a natural
transformation).

Theorem 4.4.7. Let (X,α, δ) be a λ-bialgebra for a distributive law λ : TB ⇒ BT
of T over B. The contextual closure function ctxα is bδ-compatible.

Proof. Suppose R ⊆ bδ(S) for some R and S. We prove that ctxα(R) ⊆ bδ(ctxα(S);
by Lemma 4.3.5 this implies that ctxα is bδ-compatible. Consider the following
diagram:

X

δ

��

TX
αoo

Tδ

��

TR
TπR1oo

Tγ

��

TπR2 // TX

Tδ

��

α // X

δ

��

TBX

λX

��

TBS
TBπS1oo

λS

��

TBπS2 // TBX

λX

��
BX BTX

Bα
oo BT

BTπS1

oo
BTπS2

// BTX
Bα
// BX

The existence of γ and commutativity of the upper squares follow since R ⊆ bδ(S),
by Lemma 4.4.1. The lower squares commute by naturality. The (outer) rectangles
commute since (X,α, δ) is a λ-bialgebra.

We show that the above argument implies that ctxα(R) progresses to ctxα(S).
Let fR : TR→ ctxα(R) be the corestriction of 〈α◦TπR1 , α◦TπR2 〉 : TR→ X×X to its
range, so that fR(TR) = ctxα(R). Let fS : TS → ctxα(S) be defined analogously,
and take f−1

R to be any right inverse of fR (so we use the axiom of choice). Then

82 Chapter 4. Bisimulation up-to

the following diagram commutes:

ctxα(R)π
ctxα(R)
1

{{
f−1
R

��

π
ctxα(R)
2

##
X

δ

��

TX
αoo TR

TπR1oo

fR

OO

λS◦Tγ
��

TπR2 // TX
α // X

δ

��
BX BTX

Bαoo BTS
BTπS1oo

B(fS)

��

BTπS2 // BTX
Bα // BX

B(ctxα(S))Bπ
ctxα(S)
1

cc

Bπ
ctxα(S)
2

;;

This means that ctxα(R) progresses to ctxα(S), and thus ctxα(R) ⊆ bα(ctxα(S)) by
Lemma 4.4.1.

Remark 4.4.8. The greatest bisimulation on a λ-bialgebra is closed under the al-
gebraic operations. This was first shown by Turi and Plotkin [TP97] under the
assumption that B preserves weak pullbacks; Bartels [Bar04] showed that this as-
sumption is not necessary. We obtain the same result (for Set functors) as a direct
consequence of the above Theorem and Lemma 4.3.6.

Under the assumption of a behaviour functor that preserves weak pullbacks
and a λ-bialgebra, the congruence closure cgrα is compatible as well, since it is a
union of (compositions of) rfl, tra, sym and ctxα, and each of these is compatible
by Theorems 4.4.2, 4.4.6 and 4.4.7.

Coalgebras for copointed functors. There are many interesting examples of λ-
bialgebras of the form (X,α, 〈δ, id〉), for some λ : T (B × Id) ⇒ BT × T ; in par-
ticular, this is relevant when λ arises from an abstract GSOS specification (Sec-
tion 3.5). However, while Theorem 4.4.7 gives us b〈δ,id〉-compatibility of the con-
textual closure ctxα, it does not provide bδ-compatibility. We recall a counterexam-
ple from [PS12].

Example 4.4.9 ([PS12]). Consider the following specification of the prefix and the
replication operation on labelled transition systems:

a.x
a−→ x

x
a−→ x′

!x
a−→!x|x′

together with the standard definition of the parallel operator x|y (Example 3.5.4),
and the constant 0, which has no transitions. This specification is in the GSOS
format. While this is arguably not the best way to specify replication in the context
of CCS [PS12], it suffices for our purposes. This specification induces a coalgebra
on closed terms. Now abbreviate b.0 and c.0 by b and c respectively, and consider
the relations R = {(!a.b, !a.c)} and S = {(!a.b|b, !a.c|c)}. Then R progresses to S,

4.4. Compatibility results 83

but ctx(R) does not progress to ctx(S). For example, (a.!a.b, a.!a.c) ∈ ctx(R) but
!a.b is not related to !a.c by ctx(S). Thus, by Lemma 4.3.5 the contextual closure
ctx is not bδ-compatible.

The solution of [PS12] is to consider invariants for a different function b′δ, de-
fined as b′δ(R) = bδ(R) ∩ R . But b′δ = b〈δ,id〉 (an exercise in relation lifting), so in
our framework this function arises naturally from the fact that one needs to con-
sider a coalgebra for the cofree copointed functor in order to obtain compatibility.

In terms of progressions, we have R ⊆ b′δ(S) if and only if R progresses to S
and R ⊆ S. Thus if R progresses to g(R) for a function satisfying R ⊆ g(R), then
R ⊆ b′δ(g(R)). But notice that for most functions g considered in Theorem 4.4.2
and Theorem 4.4.6 we haveR ⊆ g(R); an exception is the constant-to function. For
the contextual closure function it suffices to assume that the functor T is pointed,
i.e., there is a natural transformation η : Id⇒ T , and α is an algebra for this pointed
functor, meaning that α ◦ η = id. This holds in particular when α is an algebra for
a monad (T, η, µ).

4.4.3 Bisimulation up-to modulo bisimilarity

We investigate the situation that there are two coalgebras on a common carrier,
that behave the same up to bisimilarity. It turns out that in this case, if the functor
preserves weak pullbacks, compatibility of a function g on one coalgebra can be
transferred to compatibility of bis ◦ g ◦ bis on the other. This rather technical result
is only applied in Chapter 6, and does not play a further role in the current chapter.
It was presented in [RB15].

Definition 4.4.10. Let δ, ϑ be B-coalgebras on a common carrier. We say δ and
ϑ are equal up to bisimilarity if the bisimilarity relation ∼δ,ϑ between δ and ϑ is
reflexive.

If B preserves weak pullbacks, then an equivalent definition is that the identity
relation ∆ is a bisimulation up to bisimilarity.

Lemma 4.4.11. Let δ, ϑ : X → BX be coalgebras that are equal up to bisimilarity
and assume that B preserves weak pullbacks. Then ∼δ = ∼δ,ϑ = ∼ϑ.

Proof. By assumption ∼δ,ϑ is reflexive, and by Theorem 4.4.4 the composition of
two bisimulations is again a bisimulation. The desired equalities are now easy to
prove; for example, ∼δ ⊆ ∼δ ◦ ∼δ,ϑ by reflexivity of ∼δ,ϑ, and ∼δ ◦ ∼δ,ϑ ⊆ ∼δ,ϑ
since ∼δ ◦ ∼δ,ϑ is a bisimulation between δ and ϑ and therefore contained in ∼δ,ϑ,
the greatest such bisimulation. Conversely, ∼δ,ϑ ⊆ ∼δ,ϑ ◦ ∼ϑ,δ ⊆ ∼δ by a similar
argument.

Lemma 4.4.12. Let B, δ and ϑ be as in Lemma 4.4.11.

1. If R ⊆ bδ(S) then bis(R) ⊆ bϑ(bis(S)).

2. If g is bδ-compatible then bis ◦ g ◦ bis is bϑ-compatible.

84 Chapter 4. Bisimulation up-to

where bis is defined w.r.t. the bisimilarity relation ∼ (of both δ and ϑ).

Proof. SupposeR ⊆ bδ(S), and let (x, y) ∈ R; then δ(x) Rel(B)(S) δ(y). Since δ and
ϑ are equal up to bisimilarity, we have ϑ(x) Rel(B)(∼) δ(x) and δ(y) Rel(B)(∼)ϑ(y).
Hence

ϑ(x) Rel(B)(∼) δ(x) Rel(B)(S) δ(y) Rel(B)(∼)ϑ(y)

and since B preserves weak pullbacks, this implies ϑ(x) Rel(B)(∼ ◦ S ◦ ∼)ϑ(y)
(Theorem 3.2.5). Thus R ⊆ bϑ(∼◦S ◦∼); by compatibility of bis and Lemma 4.3.5
this implies ∼◦R ◦∼ ⊆ bϑ(∼◦∼◦S ◦∼◦∼), and by transitivity of ∼ (B preserves
weak pullbacks) then bis(R) ⊆ bϑ(bis(S)).

For (2), suppose R ⊆ bϑ(S). By (1) (replacing δ by ϑ and vice versa) then
bis(R) ⊆ bδ(bis(S)). We apply bδ-compatibility of g to obtain g ◦ bis(R) ⊆ bδ(g ◦
bis(S)). Finally, again apply (1) and get bis ◦ g ◦ bis(R) ⊆ bϑ(bis ◦ g ◦ bis(S)).

4.5 Behavioural equivalence up-to

Whenever the functor B does not preserve weak pullbacks (as it is the case, for
instance, with certain types of weighted transition systems [GS01, Kli09, BBB+12])
one can consider behavioural equivalence, rather than bisimilarity. In the current
section, we instantiate the framework of Section 4.3 to develop up-to techniques
for behavioural equivalence.

Recall from Section 3.1 that behavioural equivalence ≈ on a coalgebra δ : X →
BX is defined as follows: x ≈ y iff there is a homomorphism h from (X, δ) into
some coalgebra such that h(x) = h(y). As we see below (Lemma 4.5.1), be-
havioural equivalence ≈ can equivalently be characterized as the greatest fixed
point of the monotone function beδ : P(X × X) → P(X × X) on the lattice of
relations on X, defined as follows [AM89]:

beδ(R) = {(x, y) | BqR ◦ δ(x) = BqR ◦ δ(y)}

where qR : X → X/eq(R) is the quotient map of eq(R) (we sometimes drop the
subscript δ from beδ if it is clear from the context).

Lemma 4.5.1. Let ≈ be behavioural equivalence on a coalgebra δ : X → BX. Then
x ≈ y if and only if there is a relation R such that R ⊆ beδ(R) and (x, y) ∈ R.

Proof. The quotient map qR from the definition of beδ(R) is a coequalizer, and
therefore a coalgebra morphism [Rut00, Theorem 4.2], which gives the implication
from right to left. For the converse, we let h be a coalgebra morphism from δ and
we prove that the kernel ker(h) = {(x, y) | h(x) = h(y)} of h is a beδ-invariant, i.e.,
we show that the following inclusion holds:

ker(h) ⊆ beδ(ker(h)) = {(x, y) | Bq ◦ δ(x) = Bq ◦ δ(y)}

where q : X → X/ker(h) is the quotient map of (the equivalence relation) ker(h).
By [Rut00, Theorem 7.1], h equals the composition of coalgebra homomorphisms

4.5. Behavioural equivalence up-to 85

h = m ◦ q where q is as above and m is a monomorphism. This means that q(x) =
q(y) for any (x, y) ∈ ker(h), and since q is a coalgebra morphism from δ, we get
Bq ◦ δ(x) = Bq ◦ δ(y). Thus ker(h) ⊆ beδ(ker(h)).

The relation R of Example 4.2.2 is a beδ-invariant. Note that, intuitively, beδ-
invariants are implicitly “up to equivalence”, since the next states can be related by
the equivalence closure eq(R).

We proceed to consider be-compatibility of the equivalence closure and contex-
tual closure. In the previous section, we used the property (4.3) from Section 4.3
to prove b-compatibility of transitive and equivalence closure. However, this prop-
erty does not hold for be, that is, in general it does not hold that be(R) ◦ be(S) ⊆
be(R ◦ S). This is shown by the following example.

Example 4.5.2. Consider the identity functor BX = X and the B-coalgebra with
states {x, y} and transitions x 7→ x and y 7→ y. Let R = {(x, y)}. Then be(R) =
{(x, x), (y, y), (x, y), (y, x)} and be(∅) = {(x, x), (y, y)}. Now

be(R) ◦ be(∅) = {(x, x), (y, y), (x, y), (y, x)} ,whereas

be(R ◦ ∅) = be(∅) = {(x, x), (y, y)} .

Indeed, be(R) ◦ be(∅) is not included in be(R ◦ ∅).

This motivates to prove be-compatibility of eq directly.

Theorem 4.5.3. Let (X, δ) be any coalgebra. The following are beδ-compatible:

1. rfl—the reflexive closure;

2. eq—the equivalence closure;

3. unS—union with S (for a behavioural equivalence S).

Proof. Items 1 and 3 are analogous to Theorem 4.4.2. We proceed with the com-
patibility of the equivalence closure. First, notice that eq ◦ be = be since be(R) is
an equivalence relation for any relation R. Second, since eq(R) = eq(eq(R)) for
any R, the quotient maps in the definition of be(R) and be(eq(R)) are equal, so
be(R) = be(eq(R)). Thus eq ◦ be = be = be ◦ eq.

Notice that the be-compatibility of the equivalence closure does not require any
assumptions on the functor.

For the compatibility of contextual closure a λ-bialgebra is required, similar to
the case of bisimulations in Theorem 4.4.7. However, in the case of behavioural
equivalence, we require an algebra for a monad, although λ is still only required
to be a distributive law between functors, that is, a plain natural transforma-
tion. Further, in the proof we need an additional assumption. A pair of functions
f, g : X → Y is reflexive if it has a common section: a map s : Y → X such that
f ◦ s = id = g ◦ s. A reflexive coequalizer is a coequalizer of a reflexive pair. Reflex-
ive coequalizers are important in the theory of monads, see, e.g., [BW05]. Below

86 Chapter 4. Bisimulation up-to

we need the underlying functor T of the monad to preserve reflexive coequalizers,
which is a non-trivial condition in Set; see [AKV00, Example 4.3] for an example
of a functor that does not satisfy this property. We do not know if these additional
assumptions can be dropped.

Theorem 4.5.4. Let (T, η, µ) be a monad so that T preserves reflexive coequalizers,
and let (X,α, δ) be a λ-bialgebra for a distributive law λ : TB ⇒ BT (between func-
tors), where α is an algebra for the monad (T, η, µ). Then ctxα ◦ rfl is beδ-compatible.

Proof. Suppose R ⊆ beδ(S) for some relations R,S ⊆ X × X. By Theorem 4.5.3
rfl is beδ-compatible, so rfl(R) ⊆ beδ ◦ rfl(S). Further rfl(S) ⊆ ctxα ◦ rfl(S), using
the fact that α is an algebra for the monad (see the last part of Section 4.4.2).
Therefore

rfl(R) ⊆ beδ ◦ ctxα ◦ rfl(S) . (4.4)

Let q : X → X ′ be the quotient map of eq ◦ ctxα ◦ rfl(S) and its projections, or,
equivalently, the coequalizer of the two composite arrows α ◦ Tπ1, α ◦ Tπ2 in the
bottom of the diagram below:

TT (rfl(S))
TTπ1,TTπ2 //

µrfl(S)

��

TTX
Tα //

µX

��

TX
Tq //

α

��

TX ′

α′

���
�
�

T (rfl(S))
Tπ1,Tπ2

// TX α
// X q

// X ′

(4.5)

Define d : X → rfl(S) by d(x) = (x, x). Then the map Td ◦ ηX : X → T (rfl(S)) is a
section of the pair α◦Tπ1, α◦Tπ2, since α◦Tπ1◦Td◦ηX = α◦ηX = α◦Tπ2◦Td◦ηX
and α ◦ ηX = id. Thus, α ◦ Tπ1, α ◦ Tπ2 is a reflexive pair, and q a reflexive
coequalizer. The square on the left commutes (for Tπ1 and Tπ2 separately) by
naturality, and the middle since α is an algebra for the monad. Since T preserves
reflexive coequalizers, Tq is a coequalizer, and the map α′ making the right-hand
square commute arises by its universal property.

Now consider the following diagram:

T (rfl(R))
Tπ1 //
Tπ2

// TX

α

��

Tδ // TBX

λX

��

TBq // TBX ′

λX′

��
BTX

Bα

��

BTq // BTX ′

Bα′

��
X

δ
// BX

Bq
// BX ′

The top horizontal paths commute by (4.4) and functoriality. The rectangle com-
mutes by the assumption that (X,α, δ) is a λ-bialgebra. The upper square com-
mutes by naturality of λ, and the lower square by (4.5) and functoriality. Thus we

4.5. Behavioural equivalence up-to 87

have Bq ◦ δ ◦ α ◦ Tπ1 = Bq ◦ δ ◦ α ◦ Tπ2, and consequently

ctxα(rfl(R))
π1 //
π2

// X
δ // BX

Bq // BX ′

commutes, which means ctxα ◦ rfl(R) ⊆ beδ ◦ctxα ◦ rfl(S). By Lemma 4.3.5, ctxα ◦ rfl
is beδ-compatible.

The above result also applies to coalgebras of the form 〈δ, id〉, similar to the
situation described for bδ-compatibility in Section 4.4.2.

Example 4.5.5. For an example of behavioural equivalence up-to, we consider the
general process algebra with transition costs (GPA) from [BK01]. GPA processes are
defined for a given set of labels A and a semiring S which, for this example, we
fix to be the semiring of reals R with the usual addition and multiplication. The
operational semantics of GPA is expressed in terms of weighted transition systems,
that is, coalgebras for the functor (M−)A (Example 3.1.1).

As shown in Section 2.3 of [BBB+12], the functor (M−)A does not preserve
weak pullbacks and therefore bisimulation up-to cannot be used in this context.
However, thanks to Theorem 4.5.3 we can use behavioural equivalence up-to.

First observe that, by instantiating the definition of be above to a coalgebra
δ : X → (MX)A, one obtains the function beδ : P(X × X) → P(X × X) defined
for a relation R ⊆ X ×X as

beδ(R) = {(x1, x2) | ∀a ∈ A, y ∈ X :
∑

y′∈[y]R

δ(x1)(a)(y′) =
∑

y′∈[y]R

δ(x2)(a)(y′)}

where [y]R denotes the equivalence class of y with respect to eq(R). Our notion of
behavioural equivalence coincides with the notion of bisimilarity in [BK01] (which
differs from coalgebraic bisimilarity).

To illustrate our example it suffices to consider a small fragment of GPA. The
set P of basic GPA processes is defined by

p ::= 0 | p+ p | (a, r).p

where a ∈ A, r ∈ R. The operational semantics of basic GPA processes is given by
the coalgebra δ : P → (MP)A defined for all a′ ∈ A and p′ ∈ P as follows:

δ(0)(a′)(p′) = 0

δ((a, r).p)(a′)(p′) =

{
r if a = a′, p = p′

0 otherwise
δ(p1 + p2)(a′)(p′) = δ(p1)(a′)(p′) + δ(p2)(a′)(p′)

As an example, the operational semantics of (a, 1).0 + (a,−1).(a, 0).0 is as follows.

0

(a, 1).0 + (a,−1).(a, 0).0

a,1
44iiiiiiiiiiii

a,−1 **TTTTTTTTTT

(a, 0).0

(4.6)

88 Chapter 4. Bisimulation up-to

Since 0 ≈ (a, 0).0, we have that (a, 1).0 + (a,−1).(a, 0).0 ≈ 0. More generally, it
holds that for all a ∈ A, r ∈ R, p1 and p2 ∈ P :

if p1 ≈ p2 then 0 ≈ (a, r).p1 + (a,−r).p2. (4.7)

We prove (4.7) using behavioural equivalence up to union with≈ (Theorem 4.5.3).
To this end, consider the relation

R = {(0, (a, r).p1 + (a,−r).p2) | p1 ≈ p2} .

Note that R is not a beδ-invariant. For instance, 0 does not make any transitions
whereas (a, 1).0 + (a,−1).(a, 0).0 makes two transitions, to processes that are not
in the same equivalence class with respect to eq(R) (see (4.6)); thus R 6⊆ beδ(R).

Instead, we prove that R is a beδ-invariant up to un≈, that is, R ⊆ beδ(R ∪ ≈).
We must show that for any p = (a, r).p1 + (a,−r).p2 and any process q ∈ P :∑

y′∈[q]R∪≈

δ(0)(a)(y′) = 0 =
∑

y′∈[q]R∪≈

δ(p)(a)(y′).

The left-hand equality comes from the semantics of the process 0. For the right-
hand equality, if p1 ∈ [q]R∪≈ then also p2 ∈ [q]R∪≈ (and vice versa), which means
that

∑
y′∈[q]R∪≈

δ(p)(a)(y′) = r − r = 0. If p1 6∈ [q]R∪≈, then p2 6∈ [q]R∪≈, so∑
y′∈[q]R∪≈

δ(p)(a)(y′) = 0. We conclude that R is a beδ-invariant up to un≈.

4.6 Discussion and related work

In this chapter we have proved the soundness of a range of bisimulation up-to
techniques by proving their compatibility. Compatible functions are sound, and
are closed under composition. We conclude with a technical summary of the main
compatibility results that are introduced in this chapter. In the table below we
assume an arbitrary coalgebra δ : X → BX, an algebra α : TX → X (for a functor
T) and a distributive law λ of the functor T over the functor B. All functions in
the table are defined in Section 4.2. Recall that if a function is bδ-compatible, then
bisimulation up to g is sound (Section 4.4).

Name Notation Condition bδ-compatibility
Union with S unS S is a bisimulation
Equivalence closure eq B preserves weak pullbacks
Bisimilarity closure bisδ B preserves weak pullbacks
Contextual closure ctxα (X,α, δ) a λ-bialgebra
Congruence closure cgrα (X,α, δ) a λ-bialgebra, B pres. weak pullbacks

Further, we proved soundness of several up-to techniques for behavioural equiv-
alence, by proving that they are beδ-compatible (Section 4.5). The equivalence

4.6. Discussion and related work 89

closure eq is beδ-compatible for any functor. The contextual closure ctxα is beδ-
compatible if (X,α, δ) is a λ-bialgebra, α is an algebra for a monad, and T pre-
serves reflexive coequalizers. It remains open whether the latter two assumptions
are necessary.

A discussion of related work can be found in Chapter 5, which generalizes all
of the above results on the soundness of bisimulation up-to.

Chapter 5

Coinduction up-to

In the previous chapter, we have seen how up-to techniques enhance the proof
method for bisimilarity. In the current chapter, we extend these results to a coal-
gebraic framework for up-to techniques that is applicable not only to bisimilarity
but to a wide variety of coinductive predicates. For instance, this approach al-
lows us to obtain sound up-to techniques for unary predicates such as divergence
of processes and for binary predicates such as similarity, or language inclusion of
weighted automata over an ordered semiring.

We build on the observation that coinductive predicates can be viewed as final
coalgebras in a suitable category, so that the classical coinductive proof principle
amounts to finality (explained in Section 3.2). We show that Pous’s modular frame-
work of compatible up-to techniques (Section 4.3) has a natural counterpart at this
categorical level in terms of compatible functors, which are functors equipped with
a suitable natural transformation. The modular aspect of this framework amounts
to elementary manipulations and constructions on natural transformations. More-
over, the fact that every compatible functor yields a sound up-to technique turns
out to be a basic result on distributive laws between functors.

In Section 3.3, we recalled how coinductive predicates can be studied in a struc-
tural and systematic way using fibrations, which provide an abstract notion of pred-
icates. There, the coinductive predicate of interest is defined uniformly based on
a lifting of the behaviour functor to a category of predicates. We instantiate the
above mentioned framework of compatible functors within this fibrational setting,
and consequently obtain a modular approach for defining and reasoning about up-
to techniques for general coinductive predicates. In this setting, we introduce en-
hancements such as up-to-context, up-to-equivalence and up-to-behavioural equiv-
alence. We prove their compatibility under conditions on the functor liftings under
consideration.

By instantiating these abstract results we obtain concrete sound enhancements,
with the results of Chapter 4 on bisimulation up-to as a special case. We treat diver-
gence of processes as an example of a unary predicate, and inclusion of weighted
automata as an example based on a non-standard version of up-to-context. Further,

91

92 Chapter 5. Coinduction up-to

we apply the framework to prove the soundness of up-to techniques for simulation
as introduced in [HJ04]. As a special case, we obtain that simulation up to context
is compatible (sound) for any monotone GSOS specification (instantiated to GSOS
for labelled transition systems, this means that there are no negative premises).
This includes simulation up-to for languages as introduced in Chapter 2.

Outline. In the next section, we propose the notion of compatible functor. The
(technical) heart of this chapter is Section 5.2, where we introduce the main up-to
techniques and associated compatibility theorems. In Section 5.3, we show how
to instantiate these theorems, and in Section 5.4 we derive the compatibility of
simulation up-to for a mild restriction of abstract GSOS. In Section 5.5, we discuss
related and future work, and provide a short summary of the soundness results.

5.1 Compatible functors

In Chapter 4, we have used Pous’s lattice-theoretic framework of up-to techniques
as a modular approach for proving the soundness of bisimulation up-to techniques.
In the current section, we show how Pous’s framework generalizes to a categorical
setting, where complete lattices and monotone functions are replaced by categories
and functors (Section 3.2.2).

In that categorical setting, proving a coinductive predicate determined by a
given functor F : C → C amounts to the construction of a suitable F -invariant
(F -coalgebra). In the current chapter, we introduce up-to techniques to construct
F -invariants in an easier way; hence, these techniques can be seen as enhanced
proof techniques for the coinductive predicate (final coalgebra) of F . However, we
focus on proof techniques for constructing invariants and ignore the coinductive
predicate, and therefore we do not depend on the existence of a final F -coalgebra.

In the definition below, the intuition is that F -invariants are the coinductive
properties of interest, and G : C → C is a potential up-to technique.

• An F -invariant up to G is an FG-invariant, i.e., a coalgebra R→ FGR.

• G is F -sound if, for every FG-invariant, there exists a C-arrow from its carrier
into the carrier of an F -invariant.

It is easy to see that these definitions generalize the notions of invariants up-to and
soundness from Section 4.3.

Recall that compatibility is the central notion of Pous’s framework: given two
monotone functions f, g on a complete lattice, g is said to be f -compatible if g ◦ f ⊆
f ◦ g. If g is f -compatible then it is sound, i.e., every f -simulation up to g is
contained in an f -simulation (Theorem 4.3.2). This result is an instance of a more
general fact from the theory of distributive laws between functors.

Theorem 5.1.1. Suppose C is a category with countable coproducts, F,G : C → C are
functors and γ : GF ⇒ FG is a natural transformation. Then for any FG-coalgebra

5.1. Compatible functors 93

δ there is an F -coalgebra ϑ making the next diagram commute:

X

δ

��

κ0 // GωX

ϑ

��
FGX

Fκ1

// FGωX

Here GωX denotes the coproduct
∐
i∈NG

iX of all finite iterations of G applied to X,
with coproduct injections κi : GiX → GωX.

This appears in the proof of [Bar03, Theorem 3.8], but for a complete presen-
tation we include a proof.

Proof. Define ϑi : GiX → FGi+1X inductively as ϑ0 = δ and

ϑi+1 = GGiX
Gϑi // GFGi+1X

γGi+1X// FGGi+1X

Postcomposing these morphisms with the coproduct injections yields a cocone
(Fκi+1 ◦ ϑi : GiX → FGωX)i∈N and by the universal property of GωX we ob-
tain a coalgebra ϑ : GωX → FGωX. Commutativity of the diagram amounts to the
base case ϑ0.

(Alternatively, we can replace the countable coproduct Gω by the free monad
for G, assuming it exists. In this case, the result is an instance of the construc-
tion (3.14) in Section 3.5.1.)

If C is a preorder, then F and G are monotone functions, and the existence of
a natural transformation amounts to compatibility as in Pous’s framework. The
fact that compatible functions are sound, is thus an instance of Theorem 5.1.1.
Similarly, that f -compatible functions preserve the coinductive predicate defined
by f (Lemma 4.3.6) is an instance of the fact that, if γ : GF ⇒ FG is a distributive
law, then a final F -coalgebra lifts to a final γ-bialgebra (Lemma 3.5.1). When C is a
lattice, the fact that there is aG-algebra structure on the final coalgebra Z = gfp(F)
simply means that G(Z) ≤ Z (cf. Lemma 4.3.6).

The main reason for studying compatible functions is their compositionality
properties. To achieve a flexible approach to the construction of compatible func-
tors, we define them as follows.

Definition 5.1.2. Let F1 : C1 → C1 and F2 : C2 → C2 be functors. We say a func-
tor G : C1 → C2 is (F1, F2)-compatible when there exists a natural transformation
γ : GF1 ⇒ F2G.

The pair (G, γ) is a morphism between endofunctors F1 and F2 in the sense
of [LPW00]. In the remainder of this chapter, we often leave γ implicit, as the
examples involve only categories that are preorders.

An important instance of the above definition is (Fn, Fm)-compatibility of a
functor G : Cn → Cm; in this case, we simply say that G : Cn → Cm is F -compatible.
For example, coproduct then becomes a compatible functor by itself, rather than a
way to compose compatible functors.

94 Chapter 5. Coinduction up-to

Proposition 5.1.3. Compatible functors are closed under the following constructions:

1. composition: if G is (F1, F2)-compatible and G′ is (F2, F3)-compatible, then
G′ ◦G is (F1, F3)-compatible;

2. pairing: if (Gi)i∈I are (F1, F2)-compatible, then 〈Gi〉i∈I is (F1, F
I
2)-compatible.

Moreover, for any functor F : C → C:
3. the identity functor Id : C → C is F -compatible;

4. the constant functor to the carrier of an F -coalgebra is F -compatible, in partic-
ular to the coinductive predicate defined by F (carrier of the final F -coalgebra),
if it exists;

5. the coproduct functor
∐
I : CI → C is (F I , F)-compatible.

Proof. 1. By assumption we have natural transformations γ : GF1 ⇒ F2G and
γ′ : G′F2 ⇒ F3G

′, and composing them yields

G′GF1

G′γ +3 G′F2G
γ′G +3 F3G

′G

which is a natural transformation of the desired type.

2. Given natural transformations γi : GiF1 ⇒ F2Gi for all i ∈ I, we have

〈Gi〉i∈IF1 〈GiF1〉i∈I
γ +3 〈F2Gi〉i∈I F I2 〈Gi〉i∈I

where γX = ((γi)X)i∈I for any X.
Items 3 and 4 are trivial. For 5, we must find a natural transformation

γ :
∐
I

◦F I ⇒ F ◦
∐
I

.

On a component (Xi)i∈I it is defined using the universal property; applying F
to the coproduct injections κi : Xi →

∐
i∈I Xi yields a morphism Fκi : FXi →

F
∐
i∈I Xi for each i ∈ I.

In a lattice, the pointwise join of compatible functions is again compatible
(Proposition 4.3.3). To retrieve this in the current setting, suppose (Gi)i∈I are
(F1, F2)-compatible. Since the pairing of compatible functors is compatible, and
the coproduct functor is compatible, composing them yields a compatible functor∐
I ◦〈Gi〉i∈I (this is the coproduct of the functors Gi), which, in a lattice, is point-

wise join of monotone functions. Further, in the next section we will see how to
obtain the operator • defined in Equation (4.2) of Section 4.3, by combining a
functor that composes relations with the pairing constructor.

Further compositionality could be obtained by defining a pair (G,G′) of endo-
functors to be F -compatible if there exists a natural transformation γ : GF ⇒ FG′.
A suitable variant of Proposition 5.1.3 then allows to prove compatibility, modular
in the shape of the functor F . A related approach is taken in [LLYL14]. In this chap-
ter we do not consider such constructions, instead focusing on the combination of
up-to techniques for a fixed functor F .

5.2. Compatibility results 95

5.2 Compatibility results

In Section 3.3, we have seen how fibrations can be used to speak generally about
coinductive predicates on coalgebras. In that approach, the invariants of interest
are themselves coalgebras which live in the fibre above the carrier of a coalgebra
in the base category.

In order to define both coinductive predicates and up-to techniques, we assume

• a bifibration p : E → A (see Section 3.3.1 for details);

• a coalgebra δ : X → BX for a functor B : A → A, and

• a lifting B : E → E of B.

As explained in Section 3.3, the lifting B and the transition structure δ determine
a functor on the fibre EX above the carrier X of the coalgebra (X, δ), defined as
follows:

Bδ = δ∗ ◦BX : EX → EX .
We spell out the important definitions of invariants up-to, soundness and compati-
bility, for the functor Bδ. A Bδ-invariant is a coalgebra R→ Bδ(R), where R is an
object in EX . Given a functor G : EX → EX , a Bδ-invariant up to G is a coalgebra
R→ Bδ(G(R)).

Our interest is to find functors G that are sound, so that invariants up to G are
a valid proof principle for the construction of Bδ-invariants. Instead of proving
soundness, we focus on proving the stronger notion of compatibility. By definition,
a functor G : EX → EX is Bδ-compatible if there exists a natural transformation

γ : G ◦Bδ ⇒ Bδ ◦G .

In the remainder of this section, we introduce three families of up-to techniques:

• behavioural equivalence (Section 5.2.1),

• equivalence closure (Section 5.2.2) and

• contextual closure (Section 5.2.3).

We prove their compatibility, based on conditions on the lifting B of B. As ex-
plained in the previous section, this suffices to show that they are sound, and that
they can be combined in various ways to form new sound up-to techniques.

In Section 3.2.1 we associated to each coalgebra δ : X → BX for a functor
B : Set → Set a function bδ, whose invariants are bisimulations. In the current
setting, this can be obtained by choosing B to be the canonical relation lifting
Rel(B) of B. Then:

Bδ(R) = Rel(B)δ(R) = (δ × δ)−1(Rel(B)(R)) = bδ(R)

which means that Bδ-invariants are bisimulations on δ (Lemma 3.2.3). For all
three types of up-to techniques, we study the canonical relation lifting as a spe-
cial case, and retrieve all the bδ-compatibility results from the previous chapter.

96 Chapter 5. Coinduction up-to

In Section 5.3 and Section 5.4, we consider examples and instances for liftings
other than Rel(B), to obtain proof techniques for other coinductive predicates than
bisimilarity.

5.2.1 Behavioural equivalence

The first technique that we introduce is up-to-behavioural equivalence. If δ : X →
BX is a coalgebra for a functor B : Set→ Set, then behavioural equivalence is the
relation ≈ on its carrier given by x ≈ y iff h(x) = h(y), where h is the coinductive
extension of δ, i.e., the unique coalgebra morphism into the final coalgebra (as-
sumed to exist), see Section 3.1. Now consider the function bhvδ : RelX → RelX
defined by

bhvδ(R) = ≈ ◦R ◦ ≈ .

To define bhvδ more generally in the setting of a bifibration, observe that

bhvδ(R) = {(x, y) | ∃u, v. h(x) = h(u), h(y) = h(v) and (u, v) ∈ R}
= h−1({(h(u), h(v)) | (u, v) ∈ R})
= h−1(h(R)) .

But h−1◦h is simply direct image followed by reindexing in the fibration Rel→ Set,
i.e., h−1(h(R)) = h∗ ◦

∐
h(R) (see Section 3.3.1). Therefore, we can generalize the

above function bhvδ to an arbitrary bifibration p : E → A, a functor B : A → A
with a final coalgebra, and a coalgebra δ : X → BX by defining the behavioural
equivalence closure bhvδ as

bhvδ = h∗ ◦
∐
h : EX → EX

where h is the coinductive extension of δ. We sometimes write bhv instead of bhvδ,
if δ is clear from the context. In the predicate fibration Pred→ Set, we have

bhvδ(P) = h−1(h(P)) = h−1({h(u) | u ∈ P}) = {x | ∃u ∈ P. h(x) = h(u)} .

Our aim is to proveBδ-compatibility of bhvδ. This is an instance of the following
result, which concerns a generalization of bhvδ to arbitrary coalgebra morphisms
(rather than the coinductive extension h).

Theorem 5.2.1. Suppose that (B,B) is a fibration map. For any B-coalgebra mor-
phism h : (X, δ)→ (Y, ϑ), the functor h∗ ◦

∐
h is Bδ-compatible.

Proof. We exhibit a natural transformation

(h∗ ◦
∐
h) ◦ (δ∗ ◦BX)⇒ (δ∗ ◦BX) ◦ (h∗ ◦

∐
h)

5.2. Compatibility results 97

obtained by pasting the 2-cells (natural transformations) (a), (b), (c), (d) in the fol-
lowing diagram:

EX
B // EBX

δ∗ //∐
Bh

%%LLLLLL

⇓(b)

EX

∐
h //

⇓(d)

EY
h∗ //

99

ϑ∗rrrrrrr

⇓(c)

EX

EBY
(Bh)∗

%%LLLLLL
⇓(a)

EX ∐
h

// EY
h∗
//

B
99rrrrrrr
EX

B

// EBX
δ∗
// EX

(a) (B,B) is a fibration map, so B ◦ h∗ ∼= (Bh)∗ ◦B.

(b) B is a lifting of B; this is an instance of Lemma 3.3.4.

(c) h is a coalgebra homomorphism, i.e., ϑ ◦ h = Bh ◦ δ, and consequently (ϑ ◦
h)∗ = (Bh ◦ δ)∗. Combining this with the natural isomorphisms h∗ ◦ ϑ∗ ∼=
(ϑ ◦h)∗ and (Bh ◦ δ)∗ ∼= δ∗ ◦ (Bh)∗ shows that the required 2-cell is a natural
isomorphism.

(d) follows from (c); see the proof of Proposition 3.3.7. For convenience we
repeat the construction of the natural transformation:∐

h ◦ δ∗ =⇒
∐
h ◦ δ∗ ◦ (Bh)∗ ◦

∐
Bh =⇒

∐
h ◦ h∗ ◦ ϑ∗ ◦

∐
Bh =⇒ ϑ∗ ◦

∐
Bh .

The natural transformation on the left is the unit of the adjunction
∐
Bh a

(Bh)∗, the middle is (c), and the one on the right is the counit of
∐
h a h∗.

We first instantiate this to the canonical relation lifting Rel(B) of a Set functor
B. To this end, we use that (Rel(B), B) is a fibration map whenever B preserves
weak pullbacks (Lemma 3.3.3). The functor Rel(B)δ coincides with bδ, so from
Theorem 5.2.1 we directly obtain:

Corollary 5.2.2. If B is a Set functor preserving weak pullbacks then the behavioural
equivalence closure functor bhvδ is bδ-compatible.

If (X, δ) is a coalgebra for a functor B that preserves weak pullbacks, then
behavioural equivalence ≈ coincides with bisimilarity ∼ (Lemma 3.1.6). Hence,
in that case, the bisimilarity closure bisδ defined in Section 4.2 coincides with the
behavioural equivalence closure bhvδ:

bisδ(R) = (∼ ◦R ◦ ∼) = (≈ ◦R ◦ ≈) = bhvδ(R) .

Thus, the fact that bisδ is bδ-compatible if B preserves weak pullbacks (Theo-
rem 4.4.6) follows from Corollary 5.2.2, and hence is a special case of Theo-
rem 5.2.1.

From Theorem 5.2.1 we also derive the soundness of up-to bhv for unary pred-
icates that are defined by a modality m : B2 → 2, where B is a functor on Set.

98 Chapter 5. Coinduction up-to

Modalities are in one-to-one correspondence to predicate liftings, which are natural
transformations of the form 2Id ⇒ 2B [Sch05, Proposition 20]. If such a predicate
lifting is monotone, then it defines a lifting B : Pred → Pred of B, which maps a
predicate X → 2 to BX → B2

m−→ 2. Recall that with predicates viewed as func-
tions X → 2 reindexing is precomposition; then it is easy to show that the lifting
induced by a modality is a fibration map. Consequently, we have:

Corollary 5.2.3. If B : Pred→ Pred arises from a modality m : B2→ 2 as explained
above, then bhv is Bδ-compatible.

5.2.2 Relational composition and equivalence

We propose a general approach for deriving the compatibility of the reflexive, sym-
metric and transitive closure. Composing these functors yields compatibility of the
equivalence closure.

For transitive closure, it suffices to show that relational composition is compati-
ble. Relational composition can be expressed in a fibrational setting by considering
the category Rel×Set Rel obtained as a pullback (in the category Cat of categories1)
of the fibration Rel→ Set along itself:

Rel×Set Rel

��

// Rel

��
Rel // Set

The objects of Rel×Set Rel are pairs of relations R,S ⊆ X×X on a common carrier
X. An arrow from R,S ⊆ X ×X to R′, S′ ⊆ Y × Y is a pair of morphisms in Rel
above a common f : X → Y ; thus, it is a map f : X → Y such that f(R) ⊆ R′ and
f(S) ⊆ S′. Then relational composition can be presented as a functor

⊗ : Rel×Set Rel→ Rel

mapping relations R,S ⊆ X ×X to their composition.
The pullback Rel ×Set Rel above is, in fact, a product in the category Fib(Set)

of fibrations over Set. Indeed, Rel ×Set Rel → Set is again a fibration. In order to
treat not only relational composition but also, e.g., symmetric and reflexive closure,
we move to a more general setting of n-fold products. Consider for an arbitrary
fibration E → A its n-fold product in Fib(A) (see [Jac99, Lemma 1.7.4]), denoted
by E×nA → A and defined by pullback in Cat. We have

(E×
n
A)X = (EX)n and E0 = A .

Concretely, the objects in E×nA are n-tuples of objects in E belonging to the same
fibre, and an arrow from (R1, . . . , Rn) above X to (S1, . . . , Sn) above Y consists

1We assume that Cat contains large categories such as Set and Rel; see [Lan98] for various ways to
justify this at a foundational level.

5.2. Compatibility results 99

of a tuple of arrows (f1 : R1 → S1, . . . , fn : Rn → Sn) that sit above a common
f : X → Y .

Hereafter, we are interested in functors G : E×nA → E that are liftings of the
identity functor on A, meaning that the following diagram commutes:

E×nA
G //

!!CCCCCCCC E

����������

A

Given such a functor G, for each X in A we have functors GX : (EX)n → EX .
For the relation fibration Rel→ Set, we have three interesting instances of such

functors G:

• (n = 0): diag : Set→ Rel mapping a set X to the diagonal relation ∆X ;

• (n = 1): inv : E → E mapping a relation R to its converse Rop;

• (n = 2): ⊗ : E ×Set E → E mapping relations R,S to their composition R ◦ S.

Next, we provide a general condition on functors G : E×nA → E as above and on the
lifting B that guarantees GX to be Bδ-compatible.

Theorem 5.2.4. Let δ : X → BX be a coalgebra. Let G : E×nA → E be a lifting of the
identity functor on A such that there exists a natural transformation

γ : GBX ◦ (BX)n ⇒ BX ◦GX : (EX)n → EBX .

Then GX is Bδ-compatible.

Proof. The goal is to construct a natural transformation of the form

GX ◦ (δ∗ ◦BX)n ⇒ (δ∗ ◦BX) ◦GX .

First, observe that there is a natural transformation

θ : GX ◦ (δ∗)n ⇒ δ∗ ◦GBX : (EBX)n → EX .

by Lemma 3.3.4 (instantiated to B = Id and B = G), using that reindexing along
an A-morphism f in E×nA is (f∗)n, where f∗ is the reindexing functor in E . (To
see this, one can use the characterization of Cartesian morphisms in fibrations
obtained by change-of-base and composition, which are the basic operations used
to construct the fibration E×nA → A [Jac99, Lemma 1.7.4].)

The desired natural transformation is now obtained as follows:

GX ◦ (δ∗ ◦BX)n GX ◦ (δ∗)n ◦ (BX)n

θ(BX)n

��
δ∗ ◦GBX ◦ (BX)n

δ∗γ +3 δ∗ ◦BX ◦GX

The first equality follows from the definition of (−)n as the mediating arrow into
the product (EX)n.

100 Chapter 5. Coinduction up-to

The use of the above theorem is that compatibility is reduced to checking the
existence of a natural transformation that does not mention the coalgebra under
consideration. We list several applications of the theorem for the fibration Rel →
Set. In this case, a natural transformation GBX ◦(BX)n ⇒ BX ◦GX exists precisely
if for all relations R1, . . . , Rn on the carrier X:

G(B(R1), . . . , B(Rn)) ⊆ BG(R1, . . . , Rn) .

Instantiating this, we obtain concrete compatibility results for functors Rel×
n
Set →

Rel, including relational composition.

Corollary 5.2.5. Suppose B : Rel → Rel is a lifting of B, and δ : X → BX a B-
coalgebra.

1. Let diag : Set → Rel be the functor mapping each set to the associated diagonal
relation. The functor diagX : 1→ RelX is Bδ-compatible if:

∆BX ⊆ B(∆X) . (5.1)

2. Let inv : Rel → Rel be the functor mapping each relation to its converse. The
functor invX : RelX → RelX is Bδ-compatible if for all relations R ⊆ X2:

(BR)op ⊆ B(Rop) . (5.2)

3. Let ⊗ : Rel ×Set Rel → Rel be the relational composition functor. The functor
⊗X : RelX × RelX → RelX is Bδ-compatible if for all R,S ⊆ X2:

B(R)⊗B(S) ⊆ B(R⊗ S) . (5.3)

Note that Bδ-compatibility of diagX simply means that ∆X ⊆ Bδ(∆X), i.e., the
diagonal is a Bδ-invariant.

If relational composition is Bδ-compatible, and F1, F2 : RelX → RelX are two
Bδ-compatible functors, then their pointwise composition

F1 • F2 = ⊗X ◦ 〈F1, F2〉

is Bδ-compatible. This way of combining compatible functors corresponds to the
operator • in Section 4.3 (4.2).

This operator • was used to prove the compatibility of transitive closure in the
more concrete setting of the previous chapter (Theorem 4.4.6). We follow the same
reasoning and define the transitive closure functor as follows:

tra =
∐
◦〈(−)•i〉i≥1 : RelX → RelX

where (−)•i : Rel→ Rel is defined inductively: (−)•1 = Id and (−)•n+1 = Id•(−)•n.
By Proposition 5.1.3, compatibility of • implies compatibility of tra.

5.2. Compatibility results 101

The above conditions (5.1) and (5.2) always hold for the canonical lifting B =
Rel(B); (5.3) holds for Rel(B) when B preserves weak pullbacks (Theorem 3.2.5).
Thus, we retrieve the bδ-compatibility of reflexive, symmetric and transitive closure
(and hence also the equivalence closure eq), as proved in Theorem 4.4.6, as a
special case of Corollary 5.2.5.

When Bδ has a final coalgebra with carrier Z, one can define a self closure
functor slf : RelX → RelX by

slfδ(R) = (cstZ • Id • cstZ)(R) = Z ⊗R⊗ Z

where cstZ : RelX → RelX is the constant-to-Z functor. By Proposition 5.1.3 and
the above, the functor slf is compatible whenever ⊗ is. If B is a Set functor and
B is instantiated to the canonical relation lifting, then Z is the bisimilarity relation
∼, so

slfδ(R) = ∼ ◦R ◦ ∼ = bisδ(R)

where bisδ is the bisimilarity closure, defined in Section 4.2.

5.2.3 Contextual closure

In this section, we study the compatibility of the contextual closure. To this end,
we assume an algebra α : TX → X for some functor T : A → A. Then contextual
closure is defined using the bifibrational structure of p, parameterized by a lifting
T of T :

EX
TX // ETX

∐
α // EX

If T is a Set functor, then instantiating T to the canonical relation lifting Rel(T)
yields the usual contextual closure, denoted ctxα, as defined in Section 4.2.

However, taking different liftings of T yields different types of contextual clo-
sure, similar to the fact that taking different liftings of B to define Bδ yields dif-
ferent coinductive predicates. Indeed, in the next section we consider the left con-
textual closure for reasoning about divergence, and the monotone contextual closure
for weighted automata; both contextual closures differ from ctxα.

Given liftings of T and B, compatibility of the associated contextual closure
requires a λ-bialgebra, similar to the case of bisimulation up to context in The-
orem 4.4.7. Additionally, it is required that λ lifts to a natural transformation
between the lifted functors. All this is stated in Theorem 5.2.7 below; we require
the following basic result for its proof.

Lemma 5.2.6. Let p : E → A be a fibration, and F,G endofunctors on A with liftings
F and G respectively. Given a natural transformation λ : F ⇒ G above some λ : F ⇒
G, there exists for every object X in A a natural transformation

θ : FX ⇒ (λX)∗ ◦GX : EX → EFX

102 Chapter 5. Coinduction up-to

Proof. For any R in EX we use the universal property of the Cartesian lifting
(̃λX)GR to define θR:

F (R)

θR

���
�
�

λR

((QQQQQQQQQQQQQQQ

λ∗X(G(R))
(̃λX)GR

// G(R)

FX
λX // GX

Naturality is straightforward using the uniqueness of the factorisation and the def-
inition of the reindexing functor on morphisms.

Theorem 5.2.7. Suppose (X,α, δ) is a λ-bialgebra for some natural transformation
λ : TB ⇒ BT , and suppose there exists a natural transformation λ : T B ⇒ B T
sitting above λ. Then

∐
α ◦ T is Bδ-compatible.

Proof. The desired natural transformation is formed by composing basic pieces:

EX
B // EBX

δ∗ //

T ++VVVVVVVVVVVVVVVVV

⇓(b)

EX
T //

⇓(d)

ETX

⇓(c)

∐
α // EX

ETBX
(Tδ)∗

33hhhhhhhhhhhhhhhhh ∐
λX

&&NNNNNNN
⇓(a)

EBTX

λ∗X
88ppppppp

⇓(e)

EBTX ∐
Bα

&&MMMMMMM

EX
T

// ETX ∐
α

//

B
88qqqqqqq

EX
B

// EBX
δ∗
// EX

The pieces (natural transformations) are obtained as follows:

(a) This is the counit of the adjunction
∐
λX
a λ∗X .

(b) λ is a lifting of λ, see Lemma 5.2.6.

(c) (X,α, δ) is a bialgebra, which implies that (Bα ◦ λX ◦ Tδ)∗ = (δ ◦ α)∗ and
thus there is a natural isomorphism

(Tδ)∗ ◦ λ∗X ◦ (Bα)∗ ∼= α∗ ◦ δ∗ . (5.4)

The desired natural transformation (b) is defined from (5.4):∐
α ◦ (Tδ)∗ +3

∐
α ◦ (Tδ)∗ ◦ λ∗X ◦ (Bα)∗ ◦

∐
Bα ◦

∐
λX

(5.4)
��∐

α ◦ α∗ ◦ δ∗ ◦
∐
Bα ◦

∐
λX

+3 δ∗ ◦
∐
Bα ◦

∐
λX

5.2. Compatibility results 103

using the unit of the composite adjunction
∐
Bα ◦

∐
λX
a λ∗X ◦ (Bα)∗ and the

counit of
∐
α a α∗.

(d) This is an instance of Lemma 3.3.4, using that T is a lifting of T .

(e) This is an instance of Lemma 3.3.4, using that B is a lifting of B.

The canonical relation lifting Rel(−) of a Set functor preserves natural transfor-
mations [Jac12, Exercise 4.4.6]. Therefore, if T and B are instantiated to Rel(T)
and Rel(B) respectively, then the condition that there exists a λ above λ is satisfied.
Thus we obtain the bδ-compatibility of the contextual closure (Theorem 4.4.7) as
a special case of Theorem 5.2.7.

In order to apply Theorem 5.2.7 for situations when either T or B is not the
canonical relation lifting, one has to exhibit a λ sitting above λ. In Rel, such a λ
exists if and only if for all relations R ⊆ X2, the restriction of λX × λX to T BR
corestricts to B TR:

(λX × λX)(T B(R)) ⊆ B T (R) .

A similar condition has to be checked for Pred → Set. In Section 5.3 we consider
several examples for which we check the above condition.

Abstract GSOS

Recall from Section 3.5.2 that an abstract GSOS specification is a natural transfor-
mation of the form ρ : Σ(B×Id)⇒ BΣ∗, where Σ∗ is the free monad for Σ: A → A
(the (−)∗ notation is used both to denote reindexing functors of morphisms in A
and to denote free monads of endofunctors, but the distinction should be clear).
Any such specification induces a distributive law ρ† : Σ∗(B × Id)⇒ (B × Id)Σ∗.

To prove compatibility of the contextual closure for bialgebras for a distributive
law ρ† generated from an abstract GSOS specification, one could exhibit a natural
transformation ρ† : Σ∗(B × Id) ⇒ (B × Id)Σ∗ above ρ† directly, and then apply
Theorem 5.2.7. We next show how to simplify such a task by proving that, under
mild additional conditions, it suffices to show that there exists ρ : Σ(B×Id)⇒ B Σ∗

above ρ. The lifting of Σ∗ here is induced by the given lifting of Σ; the functor Id
lifts the identity (it does not need to be the identity itself), and will be subject to a
condition involving Σ.

The construction of ρ† from ρ is similar to the construction of ρ† from ρ. In
order to show that it is a lifting, we need some properties relating algebras in the
total category E to those in the base category A.

Lemma 5.2.8. Consider a lifting Σ of an A-endofunctor Σ and assume Σ has free
algebras.

1. The functor p : E → A has a right adjoint 1 : A → E , and this adjunction lifts

104 Chapter 5. Coinduction up-to

as follows:

Σ-alg

p
,,

⊥

��

Σ-alg
1

ll

��
E

p
++⊥ A

1

kk

2. The functor p preserves initial algebras.

3. When P ∈ EX for some X in A, the functor p maps the free Σ-algebra for P to
the free Σ-algebra for X.

4. The free monad Σ
∗

over Σ exists and is a lifting of the free monad Σ∗ over Σ.

Proof. 1. By assumption, the fibration considered here has fibred finite products,
so one can define 1(X) as the terminal object 1X in EX , and 1(f : X → Y)
as the Cartesian lifting f1Y : (1Y)∗ → 1Y which is well-defined since the p
preserves terminal objects by assumption; thus (1Y)∗ = 1X .

The functor p maps an algebra α : ΣP → P to p(α) : p(Σ(P)) → p(P) which
is indeed a Σ-algebra since Σ lifts Σ, i.e., Σp(P) = p(Σ(P)). The existence of
a right adjoint 1 to p is a consequence of [HJ98, Theorem 2.14].

2. Since p is a left adjoint, it preserves initial objects.

3. This follows from item 2 applied to the lifting Σ + P of Σ +X.

4. This is a consequence of item 3.

Lemma 5.2.8 allows us to prove the desired result on lifting distributive laws
induced by GSOS specifications. Rather than assuming that Id is itself the identity
(so that the lifted natural transformation is itself an abstract GSOS specification),
we assume that Id is a lifting that comes together with a natural transformation
γ : Σ Id ⇒ Id Σ. We shall apply this result in Section 5.4.1, involving the relation
fibration, where Id maps any relation R ⊆ X ×X to the diagonal ∆X .

Theorem 5.2.9. Suppose:

• Σ is a lifting of an A-endofunctor Σ;

• Σ has free algebras;

• Id is a lifting of the identity functor;

• there is a natural transformation γ : Σ Id⇒ Id Σ that sits above the identity;

• there is a natural transformation ρ : Σ(B × Id)⇒ BΣ
∗

above ρ : Σ(B × Id)⇒
BΣ∗, where Σ

∗
is the lifting of Σ∗ induced by Σ as in Lemma 5.2.8.

5.2. Compatibility results 105

Then there is a natural transformation ρ† : Σ
∗

(B × Id)⇒ (B × Id)Σ
∗

that sits above
ρ†.

Proof. The idea of the proof is to construct ρ† from the given natural transformation
ρ, by initiality, similar to the construction of a distributive law from a GSOS law (in
this case, ρ is not a GSOS law in general since Id does not need to be the identity
functor in E). Using Lemma 5.2.8 we can then show that this resulting distributive
law (between functors) sits above ρ†.

For an object X in A, we know that Σ∗X is the free Σ-algebra on X. Let

[κX , ηX] : ΣΣ∗X +X → Σ∗X

denote the initial Σ +X-algebra. Similarly, let

[κP , ηP] : Σ Σ
∗
P + P → Σ

∗
P

denote the initial Σ + P -algebra, where P is in EX . By Lemma 5.2.8 we know that
[κP , ηP] is above [κX , ηX].

For P ∈ EX the map ρ†P is defined similarly to the construction of ρ†X from ρX
(see (3.15) in Section 3.5.2); the difference is that it involves the natural transfor-
mation γ : Σ Id⇒ Id Σ. Indeed, ρ†P is the unique map arising from initiality:

Σ Σ
∗
(B × Id)P

Σ(ρ†P) //

κ(B×Id)P

��

Σ(B × Id)Σ
∗
P

〈ρΣ∗P ,Σπ2〉
��

B Σ
∗

Σ
∗
P × Σ Id Σ

∗
P

id×γΣ∗P
��

B Σ
∗

Σ
∗
P × Id Σ Σ

∗
P

BµP×IdκP
��

Σ
∗
(B × Id)P

ρ†P //_____ (B × Id)Σ
∗
P

(B × Id)P

η(B×Id)P

OO

(B×Id)ηP

55kkkkkkkkkkkkkk

(5.5)

By Lemma 5.2.8, and using that γ sits above the identity, we have that the Σ +
(B× Id)P -algebras in the above diagram (5.5) sit above the Σ+(B× Id)X-algebras
defining ρ†X from ρX . By uniqueness of ρ†X it follows that ρ†P sits above ρ†X .

For a ρ-model (X,α, δ), the existence of ρ† above ρ ensures, via the above re-
sult and Theorem 5.2.7, compatibility of the contextual closure on the bialgebra
(X, α̂, 〈δ, id〉) corresponding to the ρ-model. More precisely, it shows that

∐
α̂ ◦Σ∗X

106 Chapter 5. Coinduction up-to

is (B × Id)〈δ,id〉-compatible. In the remainder of this section, we address two tech-
nical issues regarding this result, which arise due to the fact that we present dis-
tributive laws by abstract GSOS specifications.

First, the above results provide compatibility for a contextual closure defined
based on the free monad Σ

∗
rather than the lifted functor Σ itself, which is the one

supplied in concrete examples. However, it turns out that the contextual closure
defined by Σ is, in fibrations whose fibres are preorders, below the one defined by
Σ
∗

(shown below in Lemma 5.2.10), so if the latter is compatible, the former is
sound. Moreover, if the lifting Σ is given by a modality, then the lifting Σ

∗
is given

in terms of the inductive extension of this modality (Lemma 5.2.11).
Second, B× Id〈δ,id〉-compatibility is not exactly Bδ-compatibility (the same phe-

nomenon was discussed at a more concrete level at the end of Section 4.4.2). How-
ever, under some assumptions, any Bδ-invariant is also a (B × Id)〈δ,id〉-invariant
(shown below in Lemma 5.2.12).

Lemma 5.2.10. Let Σ,Σ, Σ
∗

and Σ∗ be as in Lemma 5.2.8. Given an algebra
α : ΣA → A with induced algebra α̂ : Σ∗A → A for the monad Σ∗, there exists a
natural transformation of type

∐
α ◦ Σ⇒

∐
α̂ ◦ Σ

∗
.

Proof. Let η : Id ⇒ Σ∗ and κ : ΣΣ∗ ⇒ Σ∗ be the canonical natural transformations
defined by initiality; composing them yields a natural transformation ι : Σ ⇒ Σ∗.
Similarly, we can construct a natural transformation ι : Σ⇒ Σ

∗
sitting above ι.

The desired natural transformation consists of two pieces:

EX
Σ //

⇓(a)

EΣX

∐
α //

∐
ιX

��

EX

⇓(b)

EX
Σ
∗
// EΣ∗X ∐

α̂

// EX

(a) Since ι sits above ι, by Lemma 5.2.6 there is a natural transformation θ : Σ⇒
ι∗X ◦ Σ

∗
. The natural transformation for (a) is its mate:∐

ιX
◦ Σ =⇒

∐
ιX
◦ ι∗X ◦ Σ

∗
=⇒ Σ

∗

using the counit of
∐
ιX
a ι∗X .

(b) We have α = α̂ ◦ ιX , so
∐
α =

∐
α̂◦ιX

∼=
∐
α̂ ◦
∐
ιX

.

Lemma 5.2.11. Suppose Σ: Pred → Pred is a lifting of Σ: Set → Set, given by a
modality n : Σ2 → 2 (see the end of Section 5.2.1), and suppose Σ has free algebras.
Then the lifting Σ∗ of the free monad Σ∗ (Lemma 5.2.8) is given by the modality
n̂ : Σ∗2→ 2.

Proof. The lifting Σ∗ of the free monad is itself a free monad Σ
∗
, for Σ (see

Lemma 5.2.8). We need to show that, for any p : X → 2: Σ
∗
p = n̂ ◦ Σ∗p.

5.2. Compatibility results 107

First, observe that Σ
∗
p is the initial Σ + p-algebra. By Lemma 5.2.8 it sits above

the initial Σ + X-algebra [κX , ηX] : ΣΣX∗ + X → Σ∗X. Let q : Σ∗X → 2 be the
carrier of the initial Σ + p-algebra; then by definition of Σ and morphisms in Pred
it makes the following diagram commute laxly:

ΣΣ∗X +X
[κX ,ηX] //

Σq+id

��
≤

Σ∗X

q

��

Σ2 +X

[n,p]

��
2 2

Since the initial algebra is an isomorphism, this is actually strict commutativity.
Thus, we have a Σ-algebra morphism:

ΣΣ∗X +X
Σq+id //

[κX ,ηX]

��

Σ2 +X

[n,p]

��
Σ∗X q

// 2

But this is the unique Σ-algebra morphism from the initial algebra, so if we can
prove that filling in n̂ ◦ Σ∗p for q makes the above diagram commute, then we are
done. Indeed, this follows from the commutativity of:

ΣΣ∗X +X
ΣΣ∗p+id //

[κX ,ηX]

��

ΣΣ∗2 +X

[κ2,η2◦p]

��

Σn̂+id // Σ2 +X

[n,p]

��
Σ∗X

Σ∗p
// Σ∗2

n̂
// 2

The left-hand square commutes by naturality of κ and the definition of Σ∗ on mor-
phisms, the right-hand square commutes by definition of n̂.

Lemma 5.2.12. SupposeG is an E-endofunctor such that there exists a natural trans-
formation η : Id ⇒ Id ◦ G that sits above the identity. If R is a Bδ-invariant up to G
then it is a (B × Id)〈δ,id〉-invariant up to G.

Proof. Given R → δ∗BGR and the natural transformation η we construct a mor-
phism h using the universal property of the product (B× Id)(GR) = BGR× IdGR:

δ∗(BGR)

δ̃BGR
��

Roo

ηR

%%KKKKKKKKKKKK

h

���
�
�

BGR (B × Id)GRπ1

oo
π2

// IdGR

108 Chapter 5. Coinduction up-to

The morphism h sits above 〈δ, id〉 (using that η sits above the identity). Thus we
can use a Cartesian lifting of 〈δ, id〉 to get the desired invariant:

R

h

++XXXXXXXXXXXXXXXXXXXXXXXXXXX

���
�
�

〈δ, id〉∗((B × Id)(GR))
〈̃δ,id〉(B×Id)(GR)

// (B × Id)(GR)

X
〈δ,id〉 // BX ×X

If A = Rel or A = Pred, then the existence of η means that R ⊆ Id ◦ G(R). A
special case is when Id is itself the identity andG is pointed; this holds, for instance,
if G is the (canonical) contextual closure of a monad with respect to an algebra for
that monad, see the end of Section 4.4.2.

5.3 Examples

We give examples of up-to techniques for several coinductive predicates, and prove
their soundness by instantiating the results of Section 5.2.

5.3.1 Weighted language inclusion

Consider the Set functor BX = S × XA, where S is a semiring. Recall that a
B-coalgebra is a Moore automaton with output in S, and that the final semantics
assigns to every state a weighted language, i.e., a function in SA∗ (Example 3.1.1).

Suppose S carries a partial order ≤. This can be extended pointwise to an order
on weighted languages. For instance, if S is a two-element set of truth values then
this order corresponds to plain language inclusion.

To obtain such a notion of inclusion as a coinductive predicate on any B-
coalgebra, we define a lifting B : Rel → Rel of B that maps a relation R on X
to a relation on S×XA:

B(R) = {((p, ϕ), (q, ψ)) | p ≤ q and ∀a ∈ A. (ϕ(a), ψ(a)) ∈ R} . (5.6)

Given a coalgebra 〈o, t〉 : X → S ×XA, a relation R ⊆ X ×X is a B〈o,t〉-invariant
iff for every pair (x, y) ∈ R: o(x) ≤ o(y) and for all a ∈ A: (t(x), t(y)) ∈ R.
Notice that this generalizes simulation of deterministic automata (Definition 2.4.1,
Example 3.1.2). The coinductive predicate defined by B〈o,t〉, that is, the carrier of
the final B〈o,t〉-coalgebra, is the largest B〈o,t〉-invariant. We call it inclusion, and
denote it by -. Thus, to prove that x - y it suffices to construct a B〈o,t〉-invariant
that contains (x, y).

5.3. Examples 109

Let 〈o, t〉 : X → S× (MX)A be a weighted automaton (Example 3.1.1). Deter-
minizing it yields a Moore automaton 〈o], t]〉 : MX → S× (MX)A, where the final
semantics of a state x (viewed as a linear combination) is precisely the weighted
language accepted by x on the original automaton (Example 3.5.2). Indeed, given
states x and y, we have x - y if the weighted language accepted by x is (pointwise)
less than the language accepted by y, and proving x - y amounts to exhibiting a
B〈o],t]〉-invariant that contains (x, y).

As an example, consider the following weighted automaton, where S = R+ is
the semiring of non-negative real numbers and A is the singleton {a}:

x ↓ 0

a,1
,,
y ↓ 1

a,1

��

a,1

ll

Since the alphabet is a singleton, the language semantics assigns a sequence (of
zeros and ones) to each state. To show that the semantics of x is pointwise less
than that of y (i.e., the sequence generated by x is increasing) one can establish
an invariant on the states of the determinized B-coalgebra associated to the above
weighted automaton, as follows:

x ↓ 0
a // y ↓ 1

a // x+y ↓ 1
a // · · ·

y ↓ 1

�
�
�

a
// x+y ↓ 1

�
�
�

a
// x+2y ↓ 2

a
//

�
�
�

· · ·

(5.7)

where the solid arrows are transitions, and the dashed lines represent the relation.
It is straightforward to see that this requires an infinite relation.

Now consider the finite relation R = {(x, y), (y, x+y)}. This is not an invariant,
since x + y is not related to x + 2y. However, x + 2y is obtained from x + y by
substituting x for y and y for x + y, which means that (x + y, x + 2y) is in the
contextual closure ctx(R) as defined in Section 4.2, and thus R is an invariant
up to ctx. Below, we define ctx properly and show that it is compatible. As a
consequence, the relation R suffices to prove that x - y.

Consider a determinized weighted automaton (MX, 〈o], t]〉). The associated
contextual closure ctx is formally defined by ctx =

∐
µX
◦ Rel(M), where µX is

the multiplication of the monadM (Example 3.4.1). The canonical relation lifting
Rel(M) is given on a relation R ⊆ X ×X by

Rel(M)(R) =
{(∑

rixi,
∑

riyi

)
| ∀i. (xi, yi) ∈ R

}
.

To prove that ctx isBδ-compatible, recall that (MX,µX , 〈o], t]〉) is a λ-bialgebra
for some λ (Chapter 3). Compatibility follows from Theorem 5.2.7, if we show
that there is a natural transformation λ : Rel(M)B ⇒ BRel(M) sitting above λ.
Concretely, this amounts to proving that

(λX × λX)(Rel(M)(B(R))) ⊆ B(Rel(M)(R)) (5.8)

110 Chapter 5. Coinduction up-to

for any relation R ⊆ X ×X and any X. First, we compute Rel(M)(B(R)):{(∑
ri(pi, ϕi),

∑
ri(qi, ψi)

)
| ∀i. pi ≤ qi and ∀a. (ϕi(a), ψi(a)) ∈ R

}
Applying λX × λX yields a relation on BMX:{((∑

ri · pi, λa.
∑

ri · ϕi(a)
)
,
(∑

ri · qi, λa.
∑

ri · ψi(a)
))

| ∀i. pi ≤ qi and ∀a. (ϕi(a), ψi(a)) ∈ R
}

Now we compute B(Rel(M)(R)):{((
p, λa.

∑
ra,ixa,i

)
,
(
q, λa.

∑
ra,iya,i

))
| p ≤ q and ∀a.∀i. (xa,i, ya,i) ∈ R

}
It follows that the inclusion (5.8) holds whenever

∑
ri · pi ≤

∑
ri · qi given that

pi ≤ qi for all i. This is the case when for all n1,m1, n2,m2 ∈ S such that n1 ≤ n2

and m1 ≤ m2, we have

(a) n1 +m1 ≤ n2 +m2, and

(b) n1 ·m1 ≤ n1 ·m2.

These two conditions are satisfied, for instance, in the Boolean semiring or in R+.
Thus, in these cases, the construction of invariants up to ctx is a sound proof tech-
nique for inclusion.

The above argument can possibly be reformulated by using the category Pos
of posets and monotone functions as a base category rather than Set, since the
conditions (a) and (b) assert that addition and multiplication are monotone. We
leave this for future work.

Monotone contextual closure

Condition (b) fails for the semiring R of (all) real numbers. Nevertheless, our
framework allows us to prove compatibility for a different up-to technique, based
on a variant of contextual closure. The monotone contextual closure is obtained as
the composition

∐
µ ◦M involving the non-canonical lifting of the functorM (for

the semiring R) defined as follows:

M(R) =

{(∑
rixi,

∑
riyi

)
| ∀i. ri ≥ 0 ⇒ (xi, yi) ∈ R

ri < 0 ⇒ (yi, xi) ∈ R

}
The rule-based inductive characterization of the monotone contextual closure dif-
fers from the standard contextual closure (presented in Example 4.2.5) in the rule
for scalar multiplication, which now splits into two rules:

v ctx(R) w r ≥ 0

r · v ctx(R) r · w
v ctx(R) w r < 0

r · w ctx(R) r · v

5.3. Examples 111

To prove that this is compatible, we prove the inclusion

(λX × λX)(M(B(R))) ⊆ B(M(R)) . (5.9)

We first computeM(B(R)):{(∑
ri(pi, ϕi),

∑
ri(qi, ψi)

)
| ∀i. ri ≥ 0 ⇒ pi ≤ qi and ∀a.ϕi(a) R ψi(a))

ri < 0 ⇒ qi ≤ pi and ∀a.ψi(a) R ϕi(a))

}
Then (λX × λX)(M(B(R))) is:{((∑

ri · pi, λa.
∑

ri · ϕi(a)
)
,
(∑

ri · qi, λa.
∑

ri · ψi(a)
))

| ∀i. ri ≥ 0⇒ pi ≤ qi and ∀a.(ϕi(a), ψi(a)) ∈ R
ri < 0⇒ qi ≤ pi and ∀a.(ψi(a), ϕi(a)) ∈ R

}
Finally B(M(R)) is{((

p, λa.
∑

ra,ixa,i

)
,
(
q, λa.

∑
ra,iya,i

))
| p ≤ q;∀a.∀i. ra,i ≥ 0⇒ (xa,i, ya,i) ∈ R

ra,i < 0⇒ (ya,i, xa,i) ∈ R

}
The desired inclusion (5.9) holds, since ri · pi ≤ ri · qi for all i. The reason is that
pi ≤ qi when ri ≥ 0, whereas qi ≤ pi if ri < 0.

Reflexive and transitive closure

Contextual closure can be combined with reflexive, transitive and symmetric clo-
sure to obtain the congruence closure (see Section 4.2), which is a useful technique
for bisimulation up-to. For the lifting B of B (5.6) (with BX = S × XA), we
can not expect symmetric closure to be compatible, but we can nevertheless prove
compatibility of reflexive and transitive closure.

By reflexivity of ≤ it follows that ∆BX ⊆ B(∆X), and thus by Corollary 5.2.5
the functor diagX : 1 → Rel is Bδ-compatible, i.e., ∆X is a Bδ-invariant (this
amounts to the elementary fact that the diagonal on any Moore automaton is a
simulation). By Proposition 5.1.3 this implies that the endofunctor on RelX that
maps any relation to ∆X isBδ-compatible. For the transitive closure, by transitivity
of ≤ it follows that B(R) ⊗ B(S) ⊆ B(R ⊗ S), where ⊗ is relational composition.
Again by Corollary 5.2.5 we obtain Bδ-compatibility of ⊗X , and thus also of the
transitive closure.

5.3.2 Divergence of processes

Consider the functor BX = (PωX)A, where A is a set of labels that contains a
distinguished τ ∈ A. Let B : Pred → Pred be the predicate lifting for divergence
(Example 3.2.6), and recall that a process diverges if it has an infinite outgoing

112 Chapter 5. Coinduction up-to

path labelled by τ -actions. In this section, we establish compatibility of the be-
havioural equivalence closure, and of a variant of the contextual closure.

As a motivating example, consider the processes p and q given by

p
a−→ p|p q

a−→ q

where the parallel composition | is defined as usual (Example 3.5.4). To prove that
the process p|q diverges, one can establish an invariant containing p|q. But this
invariant should then contain all states occurring on the infinite path

p|q τ−→ (p|p)|q τ−→ . . .

and thus it needs to contain infinitely many states.
Instead, an informal proof might go as follows: p|q makes a τ -step to the process

(p|p)|q. But (p|p)|q is bisimilar to (p|q)|p, and now we would like to conclude
that this suffices, since we have already inspected p|q. Formally, this argument
corresponds to establishing an invariant up to the composition of the behavioural
equivalence closure and a particular type of contextual closure.

More precisely, recall from Section 5.2.1 that the functor bhv closes a given
predicate under behaviourally equivalent (i.e., bisimilar) states. Further, we define
the left contextual closure as

ctxl(P ⊆ X) = {(p|x) | p ∈ P, x ∈ X} .

Then P = {p|q} is a Bδ-invariant up to bhv ◦ ctxl (where δ is the model). To
conclude from this argument that p|q diverges, we need to prove the soundness of
bhv ◦ ctxl. We do this by proving the compatibility of bhv and ctxl separately.

Observe that the lifting B is determined by a modality m : (Pω2)A → 2 (as in
the end of Section 5.2.1). This modality is defined by: m(f) = 1 iff 1 ∈ f(τ). It
induces a monotone predicate lifting, so by Corollary 5.2.2, bhv is Bδ-compatible
on any B-coalgebra δ.

For the contextual closure, we use a functor ΣX = X × X to syntactically
represent the composition operator. Let ρ : Σ(B × Id) → BΣ∗ be the GSOS speci-
fication giving its semantics, and ρ∗ the induced distributive law (Example 3.5.4).
We define the left contextual closure of a Σ-algebra α as the composite functor
ctxl =

∐
α ◦ Σ. The lifting Σ is given by the modality n : Σ2 → 2, defined by

n(b, c) = b.
Using Theorem 5.2.9, we prove the compatibility of the (left) contextual closure∐

α̂ ◦Σ
∗
, involving the free monad for Σ (by Lemma 5.2.10, ctxl is contained in this

contextual closure). The main step is to show that there exists ρ : Σ(B×Id)⇒ B Σ∗

that sits above ρ (notice that we use the identity functor on the total category Pred
as the lifting of the identity functor on Set).

The existence of ρ above ρ amounts to the inclusion

ρ(Σ(B × Id)) ⊆ B Σ∗ (5.10)

which can be proved by hand, based on a careful analysis of ρ and the liftings.
However, in the present situation, where both B and Σ are given by modalities (m

5.4. Compositional predicates 113

and n respectively), this condition can be proved in a neater way. Using the defi-
nition of the liftings B and Σ in terms of modalities, the inclusion (5.10) amounts
to (lax) commutativity of the outside of the following diagram, for any predicate
p : X → 2:

Σ(BX ×X)
ρX //

Σ(Bp×p)
��

BΣ∗X

BΣ∗p

��
Σ(B2× 2)

ρ2 //

Σm◦Σπ1

��

BΣ∗2

Bn̂

��
Σ2

n

��

≤ B2

m

��
2 2

(The lifting Σ∗ is given by n̂; this is Lemma 5.2.11.) The upper square commutes by
naturality, which means that lax commutativity of the lower square suffices. To see
that this requirement is satisfied, let f, g ∈ B2 = (P2)A. If 1 ∈ f(τ) (which is the
only situation where n◦Σm◦Σπ1((f, x), (g, y)) = 1) then 1|y ∈ ρ2((f, x), (g, y))(τ),
which implies that m ◦Bn ◦ ρ2((f, x), (g, y)) = 1 holds, as required.

More interestingly, the property that ρ lifts reduces to checking an inclusion
that only involves finite sets (given that the set of labels is finite). This suggest
that in general, if B and Σ both preserve finite sets and the liftings are presented
by modalities, then this property is decidable. We leave a general investigation for
future work.

5.4 Compositional predicates

In this section, we describe a way of defining functor liftings by composing simpler
liftings, using a generalization of relational composition. We show that proving
compatibility of the contextual closure for such a composite lifting reduces to prov-
ing compatibility for its constituents. We instantiate this to relational composition
in the fibration Rel → Set, and apply it to derive sound up-to techniques for the
notion of similarity, studied in [HJ04].

Assume a fibration p : E → A and a functor ⊗ : E×AE → E that lifts the identity
functor (see Section 5.2.2). Suppose we have two liftings B1, B2 : E → E of the
same functor B : A → A. One can then define a composite lifting

B1 ⊗B2 = ⊗ ◦ 〈B1, B2〉 . (5.11)

Notice that B1 ⊗ B2 is a lifting of B. This follows from the fact that 〈B1, B2〉 lifts
B and that ⊗ lifts the identity functor.

Let T : E → E be a lifting of a functor T : A → A. To obtain the compatibility
of the contextual closure for a composite lifting B1⊗B2 using Theorem 5.2.7, one

114 Chapter 5. Coinduction up-to

needs to prove that a distributive law λ : TB ⇒ BT under consideration lifts to
a distributive law of T over B1 ⊗ B2. As a consequence of Theorem 5.4.1 below,
it suffices to show that there are distributive laws for the two liftings B1 and B2

separately, both sitting above λ.
This additionally requires a natural transformation γ : T⊗ ⇒ ⊗T 2

. Here

T
2

: E ×A E → E ×A E ,

defined by the universal property of the pullback E ×A E , is simply the restriction
of the functor T

2
: E × E → E × E . If T is the canonical relation lifting Rel(T) and

⊗ is relational composition, then the existence of γ in the theorem amounts to the
inclusion Rel(T)(R⊗ S) ⊆ Rel(T)(R)⊗ Rel(T)(S), which holds for any Set functor
T (Lemma 3.2.4).

Theorem 5.4.1. Suppose we have

1. a lifting T of T ;

2. a natural transformation γ : T⊗ ⇒ ⊗T 2
above id : T ⇒ T ;

3. two liftings B1 and B2 of B;

4. two natural transformations λ1 : T B1 ⇒ B1T and λ2 : T B2 ⇒ B2T sitting
above the same λ : TB ⇒ BT .

Then there exists λ : T (B1 ⊗B2)⇒ (B1 ⊗B2)T above λ.

Proof. Define λ on a component P in E as follows:

T (B1P ⊗B2P)
γ〈B1,B2〉P // (T B1P)⊗ (T B2P)

(λ1)P⊗(λ2)P // B1TP ⊗B2 TP

Notice that ((λ1)P , (λ2)P) is indeed a morphism in E×AE since λ1 and λ2 sit above
a common λ. Naturality of λ follows from naturality of λ1, λ2 and γ. Finally, λ sits
above λ since γ sits above id : T ⇒ T and ⊗ is a lifting of the identity functor.

5.4.1 Simulation up-to

We recall simulations for coalgebras as introduced in [HJ04]. An ordered functor
is a pair (B,v) consisting of a functor B : Set → Set with a factorization through
the category Pre of preorders and monotone maps:

Pre

��
Set

v
<<zzzzzzzz

B
// Set

5.4. Compositional predicates 115

Such an ordered functor gives rise to a constant relation lifting v of B defined by
v(R ⊆ X ×X) = vBX . Then the lax relation lifting Rel(B)v is defined composi-
tionally by

Rel(B)v = v⊗ Rel(B)⊗v

where ⊗ : E ×A E → E is the relational composition functor (using the notation
of (5.11) above).

Let δ : X → BX be a B-coalgebra. A Rel(B)vδ -invariant, where Rel(B)vδ abbre-
viates δ∗ ◦ Rel(B)vX , is called a simulation. The coinductive predicate defined by
Rel(B)vδ is called similarity.

Example 5.4.2. We list a few examples of ordered functors and their associated
notion of simulations, and refer to [HJ04] for many more.

1. Let S be a semiring equipped with a partial order ≤. The functor BX =
S × XA is ordered, with vBX defined as (p, ϕ) vBX (q, ψ) iff p ≤ q and
ϕ = ψ. Then Rel(B)v coincides with the lifting B defined in Section 5.3.1.

2. The functor BX = (PωX)A is ordered by pointwise subset inclusion. In this
case, a simulation is the standard notion on transition systems: a relation
R ⊆ X × X such that for all (x, y) ∈ R: if x a−→ x′ then there exists y′ such
that y a−→ y′ and (x′, y′) ∈ R. Given a transition system, similarity is the
greatest simulation.

An ordered functor B is called stable if (Rel(B)v, B) is a fibration map [HJ04].
Since polynomial functors, as well as the one for LTSs, are stable [HJ04], the
following results hold for the coalgebras in Example 5.4.2.

Proposition 5.4.3. If B is a stable ordered functor, then the behavioural equiva-
lence closure bhv, the self closure slf and the transitive closure tra (all defined in
Section 5.2.2) are Rel(B)vδ -compatible.

Proof. Compatibility of bhv comes from Theorem 5.2.1, which only requires that
(Rel(B)v, B) is a fibration map. Compatibility of slf and tra comes from Corol-
lary 5.2.5: as shown in [HJ04, Lemma 5.3], stable functors satisfy condition (5.3),
i.e., for all relations R,S ⊆ X2: Rel(B)v(R)⊗ Rel(B)v(S) ⊆ Rel(B)v(R⊗ S).

If BX = (PωX)A then bhv maps a relation R to ∼ ◦ R ◦ ∼ where ∼ is bisimi-
larity, whereas slf maps R to . ◦ R ◦ ., where . is similarity.

We proceed to consider the compatibility of the contextual closure, for which we
assume an abstract GSOS specification ρ : Σ(B×Id) ⇒ BΣ∗. Such a specification
ρ is monotone if, for any X, the restriction of ρX × ρX to Rel(Σ)(vBX × ∆X)
corestricts to vBΣ∗X . If Σ is a polynomial functor representing a signature, then
this means that for any operator σ (of arity n) we have

b1 vBX c1 . . . bn vBX cn
ρX(σ(b,x)) vBΣ∗X ρX(σ(c,x))

116 Chapter 5. Coinduction up-to

where b,x = (b1, x1), . . . , (bn, xn) with xi ∈ X and similarly for c,x. If v is the
order on the functor for LTSs, then monotonicity corresponds to the positive GSOS
format [FS10], which is GSOS without negative premises. Monotonicity turns out
to be precisely the condition needed to apply Theorem 5.2.9.

Proposition 5.4.4. Let ρ : Σ(B × Id) ⇒ BΣ∗ be a monotone abstract GSOS specifi-
cation and (X,α, 〈δ, id〉) be a ρ†-bialgebra. Then ctx =

∐
α ◦ Rel(Σ∗) is (Rel(B)v ×

Id)〈δ,id〉-compatible.

Proof. To obtain the desired compatibility from Theorem 5.2.7, we need to prove
that there exists a distributive law ρ† of Rel(Σ∗) over Rel(B)v× Id, sitting above ρ†.

First, observe that the lifting Rel(B)v × Id of B × Id decomposes as

(v× Id)⊗ (Rel(B)× Id)⊗ (v× Id)

where Id is the constant functor mapping R ⊆ X × X to ∆X . Notice that Id is a
lifting of the identity functor (but it is not the identity functor itself).

By Theorem 5.4.1, proving the existence of ρ† above ρ† reduces to proving that
there exist two natural transformations

1. ρ†1 : Rel(Σ∗)(Rel(B)× Id)⇒ (Rel(B)× Id)Rel(Σ∗), and

2. ρ†2 : Rel(Σ∗)(v× Id)⇒ (v× Id)Rel(Σ∗),

both sitting above ρ†. (Notice that since the functor T of the theorem is a canonical
relation lifting, the required γ exists.)

For item 1, observe that the required natural transformation exists since both
functor liftings are canonical; see Section 5.2.3 (below Theorem 5.2.7).

For item 2, the task reduces by Theorem 5.2.9 to showing that there is

ρ : Rel(Σ)(v× Id)⇒ v ◦ Rel(Σ∗)

above ρ. But this is precisely monotonicity, as introduced above. Further, The-
orem 5.2.9 requires that there exists a natural transformation γ : Rel(Σ) ◦ Id ⇒
Id ◦ Rel(Σ). Since Id is the functor mapping any relation to the diagonal over its
carrier, γ exists if Rel(Σ)(∆X) ⊆ ∆ΣX , which holds for any Σ (Lemma 3.2.4). Thus,
as a consequence of Theorem 5.2.9, we obtain the desired natural transformation.

The existence of ρ†1 and ρ†2 ensures, by Theorem 5.4.1 and Theorem 5.2.7,
that ctx is (Rel(B)v × Id)〈δ,id〉-compatible.

A direct consequence of this result is that simulation up-to is compatible on any
model of a positive GSOS specification.

Further, Theorem 2.4.6 states that simulation up-to (precongruence) for lan-
guages is sound whenever the operations under consideration are given by mono-
tone behavioural differential equations. But any such operation can also be ex-
pressed in monotone GSOS for the ordered functor BX = 2 × XA (see Exam-
ple 5.4.2). Thus, we obtain the compatibility of the contextual closure by Proposi-
tion 5.4.4, and since the reflexive and transitive closure are compatible as well
(Section 5.3.1), composing them together yields an alternative proof of Theo-
rem 2.4.6.

5.5. Discussion and related work 117

5.5 Discussion and related work

We showed how up-to techniques fit into the setting of coinduction in a fibration,
yielding a general and modular theory of coinduction up-to. This goes beyond the
previous chapter in several ways: first, it allows other predicates than bisimilarity,
including other binary predicates but also, e.g., unary predicates. Second, it can be
instantiated to different base categories (in [BPPR14] an example of this is given
by up-to-congruence for nominal automata).

Bisimulation up-to at the level of coalgebras was studied by Lenisa [Len99,
LPW00]. The up-to-context technique for coalgebraic bisimulation was later de-
rived as a special case of so-called λ-coinduction [Bar04]. Combining up-to tech-
niques remained an open problem. In [Luo06], Sangiorgi’s framework of up-to
techniques [San98] is adapted to prove soundness of several up-to techniques for
bisimulation, based on relation lifting and thus strongly related to the develop-
ment in Chapter 4, but combinations of enhancements are not considered there.
Finally [ZLL+10] introduces bisimulation up-to where the notion of bisimulation is
based on a specification language for polynomial functors. All of the above works
focus on bisimulation, rather than general coinductive predicates.

We conclude with a short, technical summary of the main soundness results
of this chapter. The up-to techniques and soundness results are all formulated in
terms of a bifibration p : E → A, a coalgebra δ : X → BX for a functor B : A → A
(that models the system of interest) and a lifting B : E → E of A (that determines
the coinductive predicate of interest). By proving a functor G to be Bδ-compatible,
the construction of invariants up toG is a sound proof technique for the coinductive
predicate determined by the lifting B on the coalgebra δ. The table below lists
the main compatibility results, based on conditions on the functors involved. For
ctxα, we assume an algebra α : TX → X for a functor T with a lifting T , and a
distributive law of the functor T over the functor B.

Name Notation Condition Bδ-compatibility
Behavioural equivalence bhvδ (B,B) is a fibration map

Contextual closure ctxα
(X,α, δ) is a λ-bialgebra, and there is a
distributive law of T over B above λ

If p : Rel → Set is the relation fibration, then we have the following additional
results.

Name Notation Condition Bδ-compatibility
Diagonal functor diag ∆BX ⊆ B(∆X)

Inverse functor inv (BR)op ⊆ B(Rop) for all R ⊆ X2

Relational comp. ⊗ B(R)⊗B(S) ⊆ B(R⊗ S) for all R,S ⊆ X2

Self closure slfδ ⊗ is Bδ-compatible
Transitive closure tra ⊗ is Bδ-compatible
Equivalence closure eq diag, inv and ⊗ are Bδ-compatible

118 Chapter 5. Coinduction up-to

While the techniques introduced in this chapter are very general, they are also
quite technical and require significant background knowledge to be understood. It
would be a worthwile effort to develop natural specification techniques for coin-
ductive predicates, in which compatibility can be established easily, or even auto-
matically. In this chapter we have suggested one approach in this direction: the use
of modalities to specify coinductive predicates, so that, under suitable assumptions,
the required condition for compatibility of the contextual closure is a decidable
property. We leave a more extensive investigation for future work.

Chapter 6

Bialgebraic semantics with
equations

In this chapter, we focus on structural operational semantics, in the setting of ab-
stract GSOS specifications as introduced by Turi and Plotkin. As explained in Sec-
tion 3.5 and the introduction, their approach provides a general perspective on
well-behaved, compositional calculi and languages, parametric in the type of be-
haviour and the type of syntax. Moreover, in the previous chapters we have seen
that bisimulation up to context is a sound (even compatible) proof technique on
models of abstract GSOS specifications.

Given a GSOS specification, the behaviour of terms is computed inductively,
which is possible since each operator is defined directly in terms of the behaviour
of its arguments. An example of a rule that does not fit the GSOS format is the
following:

!x|x a−→ t

!x
a−→ t

(6.1)

This rule properly defines the replication operator in CCS1: intuitively, !x represents
x|x|x| . . ., i.e., the infinite parallel composition of x with itself. In fact, the above
rule can be seen as assigning the behaviour of the term !x|x to the simpler term !x,
therefore we call it an assignment rule.

We show how to interpret assignment rules together with abstract GSOS specifi-
cations. Our approach is based on the assumption that the functor which represents
the type of coalgebra is ordered as a complete lattice; for example, for the functor
(P−)A of labelled transition systems this order is simply pointwise set inclusion.
The operational model on closed terms is then defined as the least model such that
every transition can either can be derived from a rule in the specification or from

1The simpler rule x
a−→x′

!x
a−→!x|x′

is problematic in the presence of the sum operator, since it does not

allow to derive τ -transitions from a process such as !(a.P + a.Q) [PS12, SW01].

119

120 Chapter 6. Bialgebraic semantics with equations

an assignment rule. To ensure the existence of such least models, we disallow neg-
ative premises by using monotone abstract GSOS specifications, a generalization of
the positive GSOS format for transition systems (see Section 5.4.1).

The main result of this chapter is that the interpretation of a monotone abstract
GSOS specification together with a set of assignment rules is itself the operational
model of another (typically larger) abstract GSOS specification. Like the inter-
pretation of a GSOS specification with assignment rules, we construct this latter
specification by fixed point induction. As a direct consequence of this alternative
representation of the interpretation, we obtain that bisimilarity is a congruence and
that bisimulation up to context is sound and even compatible—properties that do
not follow from bisimilarity being a congruence [PS12]. As an example, we obtain
the compatibility of bisimulation up to context for CCS with replication, which was
shown earlier with an ad-hoc argument (see, e.g., [PS12]).

In the second part of this chapter, we combine structural congruences with the
bialgebraic framework, using assignment rules. Structural congruences have been
widely used in concurrency theory ever since their introduction in the operational
semantics of the π-calculus in [Mil92]. The basic idea is that SOS specifications are
extended with equations ≡ on terms, which are then linked by a special deduction
rule:

t ≡ u u
a−→ u′ u′ ≡ v
t
a−→ v

This rule essentially states that if two processes are equated by the congruence
generated by the set of equations, then they can perform the same transitions.
Prototypical examples are the specification of the parallel operator by combining a
single rule with commutativity, and the specification of the replication operator by
an equation, both shown below:

x
a−→ x′

x|y a−→ x′|y
x|y = y|x !x = !x|x (6.2)

Even though structural congruences are standard in concurrency theory, a system-
atic study of their properties was missing until the work of Mousavi and Reniers,
who show how to interpret SOS rules with structural congruences in various equiv-
alent ways [MR05]. Mousavi and Reniers exhibit very simple examples of equa-
tions and SOS rules for which bisimilarity is not a congruence, even when the SOS
rules are in the tyft (or the GSOS) format. As a solution to this problem they in-
troduce a restricted format for equations, called cfsc, for which bisimilarity is a
congruence when combined with tyft specifications.

In the current chapter, we show how to interpret structural congruences at the
general level of coalgebras, in terms of an operational model on closed terms. We
prove that when the equations are in the cfsc format then they can be encoded by
assignment rules, in such a way that their respective interpretations coincide up
to bisimilarity. Consequently, not only is bisimilarity a congruence for monotone
abstract GSOS combined with cfsc equations, but we also obtain the compatibil-
ity of bisimulation up to context and bisimilarity. From a technical point of view,

6.1. Assignment rules 121

structural congruences have not been developed outside the work of Mousavi and
Reniers, and have not at all been explored in the theory of bialgebraic seman-
tics [Bar04, Kli07]. Here, we develop the basic theory of monotone abstract GSOS
specifications for ordered functors, and use it to obtain a bialgebraic perspective
on structural congruences (assuming an ordered behaviour functor).

Outline In Section 6.1, we introduce assignment rules and their interpretation.
In Section 6.2, we show that this interpretation can be obtained as the operational
model of another abstract GSOS specification. Section 6.3 contains the integra-
tion of structural congruence with the bialgebraic framework. In Section 6.4, we
conclude and discuss related work.

6.1 Assignment rules

We consider the interpretation of abstract GSOS specifications (without negative
premises) together with assignment rules of the form

σ(x1, . . . , xn) := t (6.3)

where t is a term over the variables x1, . . . , xn. Assignment rules will be interpreted
as a kind of rewriting rules: the behaviour of t induces behaviour of σ(x1, . . . , xn).
An example is the replication operator given in equation (6.1) of the introduc-
tion; this can be given by the assignment rule !x := !x|x. Notice that assignment
rules do not fit directly into the bialgebraic framework, since they are inherently
non-structural: they do not satisfy the property of GSOS specifications that the be-
haviour of terms in the operational model is computed directly from the behaviour
of their subterms.

In the case of labelled transition systems, given a GSOS specification and a set
of rules of the above form, the desired interpretation is informally as follows (this
is formalized below): every transition from a term σ(t1, . . . , tn) should either be
derived from the transitions of t1, . . . , tn and a rule in the specification, or from an
assignment rule which has σ on the left-hand side. However, such an interpreta-
tion is not necessarily unique, since there may be infinite inferences caused by the
assignment rules. For example, the rule σ(x) := σ(x) does not have a unique solu-
tion. In order to rule out infinite inferences, one is interested in the least transition
system on closed terms which is a model in the above sense. Such a least model
does not necessarily exist in general because of negative premises. Therefore, we
will restrict to GSOS specifications without negative premises.

To interpret specifications which involve assignment rules at the general level
of a functor B : Set → Set one needs a notion of order on B. In the case of
labelled transition systems, this order is clear and often left implicit: in that case
BX = (PX)A, and the order is simply the (pointwise) subset order. To allow
the desired generalization, we assume that our behaviour functor B is ordered (cf.
Section 5.4.1). We will need the existence of fixed points of monotone functions.

122 Chapter 6. Bialgebraic semantics with equations

To this end, let CJSL be the category of complete (join semi-)lattices and join-
preserving functions. We define a CJSL-ordered functor to be a functor B : Set →
Set with a factorization v through CJSL:

CJSL

U

��
Set

v

;;xxxxxxxx

B
// Set

where U is the forgetful functor. If B is a CJSL-ordered functor, then for any set X,
BX is a complete lattice. We denote the join of a set S ⊆ BX in this lattice by

∨
S,

and we write ⊥ for
∨
∅ and x ≤ y if x ∨ y = y, for x, y ∈ BX. Moreover, for any

function f : X → Y , Bf is join-preserving. Consequently, Bf is also monotone,
i.e., for any x, y ∈ BX: x ≤ y implies (Bf)(x) ≤ (Bf)(y).

Example 6.1.1. The functor (P−)A of labelled transition systems is CJSL-ordered,
with the order on (PX)A given by pointwise subset inclusion.

Example 6.1.2. In Chapter 3 we defined weighted transition systems for a semiring
as coalgebras for the functor (M−)A, where MX consists of (finite) linear com-
binations with coefficients in the semiring. Here, we consider weighted transition
systems for a complete monoid M , i.e., a monoid with an infinitary sum operation
consistent with the finite sum [DK09]. These are coalgebras for the functor (M−)A

where M− : Set→ Set is defined as follows:

• For each set X, MX is the set of functions from X to M .

• For each function h : X → Y , Mh : MX →MY is the function mapping each
ϕ ∈MX into ϕh ∈MY defined, for all y ∈ Y , by ϕh(y) =

∑
x′∈h−1(y) ϕ(x′).

By taking the Boolean monoid, we retrieve infinitely branching labelled transition
systems. As another example, consider the set R+ ∪ {∞} of positive reals, ordered
as usual and extended with a top element ∞. Together with the supremum oper-
ation, R+ ∪ {∞} forms a complete ordered monoid, with 0 as unit. The order on
R+ ∪ {∞} extends to an order on the functor for weighted transition systems over
this monoid, where joins are calculated pointwise.

Example 6.1.3. For a non-example: we can try to extend a functor B : Set → Set
to a CJSL-ordered functor B′ by defining B′X = BX + 2, putting the discrete
order on BX and taking the elements of 2 = {>,⊥} to be the top and the bottom
element respectively. Contrary to what is stated in [RB14, Example 2], such a
functor B′ is not CJSL-ordered, in general. Indeed B′X is a complete lattice, but
the functor B′ is not well-defined on morphisms: given a function f , B′f need
not be join-preserving. For instance, if we take B = Id, a set X with two distinct
elements x, y ∈ X and a function f : X → X such that f(x) = f(y), we have
(B′f)(x)∨(B′f)(y) = (B′f)(x) = f(x) 6= >whereas (B′f)(x∨y) = (B′f)(>) = >.

6.1. Assignment rules 123

Given arbitrary sets X and Y , the complete lattice on BY lifts pointwise to
a complete lattice on functions of type X → BY , i.e., for a collection {fi}i∈I of
functions of the form fi : X → BY we define (

∨
{fi}i∈I)(x) =

∨
i∈I(fi(x)) . This

induces in particular a complete lattice on the set of all coalgebras on closed terms
over a signature. Given a polynomial functor Σ: Set → Set corresponding to a
signature (Section 3.4), we denote this set by

M = {f | f : Σ∗∅ → BΣ∗∅} . (6.4)

The order on B lifts to an order on B × Id by defining (b1, x1) ≤ (b2, x2) iff b1 ≤ b2
and x1 = x2 for (b1, x1), (b2, x2) ∈ BX ×X. Moreover, given Σ as above, the order
lifts componentwise to ΣBX (and also to Σ(BX ×X)) for any set X, by defining,
for any operators σ, τ of arity n and m respectively: σ(k1, . . . , kn) ≤ τ(l1, . . . , lm)
iff σ = τ (so also n = m) and ki ≤ li for all i ≤ n.

Definition 6.1.4. Using the above lifting of the order on B to Σ(B × Id), a spec-
ification ρ : Σ(B × Id) ⇒ BΣ∗ is said to be monotone if all its components are
monotone.

Definition 6.1.4 is a special case of monotone abstract GSOS specifications de-
fined in terms of relation lifting, as introduced in Section 5.4.1. For the functor
BX = (PX)A of labelled transition systems, monotone specifications correspond
to specifications in (an infinitary version of) the positive GSOS format [FS10].

Assignment rules (6.3) can be formalized in terms of natural transformations,
which are independent of the behaviour functor B.

Definition 6.1.5. An assignment rule is a natural transformation d : Σ⇒ Σ∗.

If there is no intended assignment for an operator σ ∈ Σ, this is modelled by
defining dX(σ(x1, . . . , xn)) = σ(x1, . . . , xn) for every X. For example, the assign-
ment rule for the replication operator is the natural transformation that sends !x to
!x|x for any x, and is the identity on all other operators in Σ.

Assumption 6.1.6. In the remainder of this chapter, we assume:

1. A CJSL-ordered functor B.

2. A functor Σ defined from a signature (see Section 3.4), with free monad
(Σ∗, η, µ).

3. A monotone GSOS specification ρ : Σ(B × Id)⇒ BΣ∗.

4. A set ∆ of assignment rules, ranged over by d : Σ⇒ Σ∗.

Throughout this chapter we denote by M(ρ) the operational model of ρ. As ex-
plained in Section 3.5.2, the operational model M(ρ) : Σ∗∅ → BΣ∗∅ is the unique

124 Chapter 6. Bialgebraic semantics with equations

coalgebra that makes the following diagram commute:

ΣΣ∗∅

κ∅

��

Σ〈M(ρ),id〉 // Σ(BΣ∗∅ × Σ∗∅)

ρΣ∗∅

��
BΣ∗Σ∗∅

Bµ∅

��
Σ∗∅

M(ρ)
// BΣ∗∅

(6.5)

where κ : ΣΣ∗ ⇒ Σ∗ is the natural transformation such that, for a component X,
the copairing [κX , ηX] is the initial Σ+X-algebra (Equation (3.11) in Section 3.4).
Observe that the operational model is the unique f ∈ M (see Equation 6.4) satis-
fying the equation

f ◦ κ∅ = Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 .

The definition below extends this equation to incorporate assignment rules.

Definition 6.1.7. Let ψ : M→M be the (unique) function such that

ψ(f) ◦ κ∅ = Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

f ◦ µ∅ ◦ dΣ∗∅ .

A (ρ,∆)-model is a coalgebra f ∈M such that ψ(f) = f .

The function ψ is indeed uniquely defined, since κ∅ : ΣΣ∗∅ → Σ∗∅ is an initial
algebra and therefore an isomorphism. As argued in the beginning of this section,
in general there may be more than one model for a fixed ρ and ∆, and we regard
the least (ρ,∆)-model to be the intended interpretation. In order to show that a
least model exists, we need the following.

Lemma 6.1.8. The function ψ : M→M is monotone.

Proof. Let f, g ∈ M with f ≤ g. By monotonicity of ρ, we have ρΣ∗∅ ◦ Σ〈f, id〉 ≤
ρΣ∗∅ ◦Σ〈g, id〉, and since Bµ∅ is monotone then Bµ∅ ◦ρΣ∗∅ ◦Σ〈f, id〉 ≤ Bµ∅ ◦ρΣ∗∅ ◦
Σ〈g, id〉. It follows that ψ(f) ◦κ∅ ≤ ψ(g) ◦κ∅ and thus also ψ(f) ≤ ψ(g) because κ∅
is an isomorphism.

Since ψ is monotone and M is a complete lattice, by the Knaster-Tarski theorem
ψ has a least fixed point.

Definition 6.1.9. The interpretation of ρ and ∆ is the least (ρ,∆)-model, i.e.,
lfp(ψ).

Example 6.1.10. For a GSOS specification together with assignment rules, the
interpretation is the least transition system on closed terms so that σ(t1, . . . , tn)

a−→
t′ if and only if:

6.2. Integrating assignment rules in abstract GSOS 125

1. it can be obtained by instantiating a rule in the specification, or

2. there is an assignment of t to σ, and t a−→ t′.

This is a recursive definition; being the least such transition system has the desired
consequence that every derivation of a transition t a−→ t′ is finite.

6.2 Integrating assignment rules in abstract GSOS

In the previous section, we have seen how to interpret a monotone abstract GSOS
specification ρ together with a set of assignment rules ∆ as a coalgebra on closed
terms. In this section, we show that we can alternatively construct this coalge-
bra as the operational model of another specification (without assignment rules),
which is constructed as the least fixed point of a function on the complete lattice
of specifications. The consequence of this alternative representation is that the
well-behavedness properties of the operational model of a specification, such as
bisimilarity being a congruence and the compatibility of bisimulation up to con-
text, carry over to the interpretation of ρ and ∆.

Let G be the set of all monotone abstract GSOS specifications of Σ over B
(Definition 6.1.4). We turn G into a complete lattice by defining the order com-
ponentwise, i.e., for any L ⊆ G and any set X: (

∨
L)X =

∨
ρ∈L ρX . The join is

well-defined:

Lemma 6.2.1. For any L ⊆ G: the family of functions
∨
L as defined above is a

monotone specification.

Proof. Let f : X → Y be a function. For any k ∈ Σ(BX ×X):

BΣ∗f ◦ (
∨
L)X(k) = BΣ∗f ◦ (

∨
ρ∈L(ρX(k))) definition of

∨
L

=
∨
ρ∈L(BΣ∗f ◦ ρX(k)) BΣ∗f is join-preserving

=
∨
ρ∈L(ρY ◦ Σ(Bf × f)(k)) naturality of ρ

= (
∨
L)Y (Σ(Bf × f)(k)) definition of

∨
L

which proves naturality. Monotonicity is straightforward as well.

The lattice structure of G provides a way of combining specifications. Consider,
for an assignment rule d ∈ ∆ and specification τ , the following natural transfor-
mation:

Σ(B × Id)
dB×Id // Σ∗(B × Id)

τ† // BΣ∗ × Σ∗
π1 // BΣ∗ (6.6)

Recall from Section 3.5.2 that τ † is the extension of τ to a distributive law; in-
tuitively, it is the inductive extension of τ to terms. Informally, the above natu-
ral transformation acts as follows. For an operator σ of arity n, given behaviour
k1, . . . , kn ∈ BX × X of its arguments, it first applies the assignment rule d to
obtain a term t(k1, . . . , kn). Subsequently τ † is used to compute the behaviour

126 Chapter 6. Bialgebraic semantics with equations

of t given the behaviour k1, . . . , kn. In short, the above transformation computes
the behaviour of an operator by using rules from τ and a single application of the
assignment rule d.

Example 6.2.2. Suppose the signature Σ contains a binary operator and a unary
operator (to be interpreted as parallel composition | and replication ! respectively).
Further, let ρ be a GSOS specification defined as usual for | (Example 3.5.4), and
without any rules for the replication operator !x. Let d be the assignment rule
associated to the replication, i.e., the identity on all operators except !x, which is
mapped to !x|x.

Then the natural transformation in (6.6) corresponds to a specification in which
there is a rule that concludes with !x → t for some t if and only if there is a
derivation of !x|x → t in the GSOS specification ρ, from the same premises. Since
there are no rules for !x in ρ, the only possible derivation is

x
a−→ x′

!x|x a−→!x|x′

and therefore, the only rule for !x is

x
a−→ x′

!x
a−→!x|x′

The natural transformation in (6.6) is unchanged on all other operators.

As explained in the introduction of this chapter, this is not quite the correct
specification of replication yet, but it is a first step. To obtain the correct specifi-
cation, we need to apply such a construction recursively, which we will do below.
First we define a function ϕ on G which uses the above construction to build, from
an argument specification τ (of Σ over B), the specification containing all rules
from the fixed specification ρ and all rules which can be formed as in (6.6).

Definition 6.2.3. Given our fixed ρ and ∆ (Assumption 6.1.6), the map ϕ : G→ G
is defined as

ϕ(τ) = ρ ∨
∨
d∈∆

(π1 ◦ τ † ◦ dB×Id) .

For well-definedness, we need to check that ϕ preserves monotonicity. To this
end, it is convenient to speak about monotonicity of a distributive law τ †, which
requires an order on Σ∗. Any partial order (X,≤) inductively extends to an order
on Σ∗X by defining

σ(t1, . . . , tn) ≤ τ(u1, . . . , um)

iff σ = τ (so also n = m) and ti ≤ ui for all i ≤ n. We thus get a notion of
monotonicity of distributive laws (this can be defined more generally using relation
lifting, see Section 5.4.1; here, we provide a concrete, self-contained exposition).

Lemma 6.2.4. If τ is a monotone specification, then ϕ(τ) is monotone as well.

6.2. Integrating assignment rules in abstract GSOS 127

Proof. We prove that if τ is monotone then the induced distributive law τ † : Σ∗(B×
Id)⇒ BΣ∗×Σ∗ is also monotone, by induction on pairs of terms t, u ∈ Σ∗(BX×X)
with t ≤ u (note that this order is defined inductively). The desired result that ϕ(τ)
is monotone then follows, since assignment rules d are clearly monotone.

For the base case, if (b, x), (c, y) ∈ BX × X with (b, x) ≤ (c, y) (so b ≤ c and
x = y) then

τ †X ◦ ηBX×X(b, x) = (BηX × ηX)(b, x) ≤ (BηX × ηX)(c, y) = τ †X ◦ ηBX×X(c, y)

where the inequality holds by monotonicity of BηX and since x = y, and the
equalities by definition of τ † (Equation (3.15) in Section 3.5.2).

Suppose σ is an operator of arity n, and t1, . . . , tn, u1, . . . , un ∈ Σ∗(BX × X)

with τ †X(ti) ≤ τ †X(ui) for all i. Then

τ †X ◦ κBX×X(σ(t1, . . . , tn))

= (BµX × κX) ◦ 〈τΣ∗X ,Σπ2〉 ◦ Στ †X(σ(t1, . . . , tn)) definition τ †

= (BµX × κX) ◦ 〈τΣ∗X ,Σπ2〉(σ(τ †X(t1), . . . , τ †X(tn))) definition Σ

≤ (BµX × κX) ◦ 〈τΣ∗X ,Σπ2〉(σ(τ †X(u1), . . . , τ †X(un))) see below
= τ †X ◦ κBX×X(σ(u1, . . . , un))

The inequality holds by monotonicity of BµX and τ , and the induction hypothesis;
note that the induction hypothesis implies π2 ◦ τ †X(ti) = π2 ◦ τ †X(ui) for all i.

Moreover, ϕ is monotone on G:

Lemma 6.2.5. The function ϕ : G→ G is monotone.

The main step in the proof of Lemma 6.2.5 is to show that the extension (−)†

of abstract GSOS specifications to distributive laws is monotone.

Lemma 6.2.6. Let τ1, τ2 be specifications. If τ1 ≤ τ2 then π1 ◦ (τ †1) ≤ π1 ◦ (τ †2).

Proof. We have

(τ †1)X ◦ ηBX×X = BηX × ηX = (τ †2)X ◦ ηBX×X
by definition of (−)† (Equation (3.15) in Section 3.5.2). Moreover

(BµX × κX) ◦ 〈(τ1)Σ∗X ,Σπ2〉 ≤ (BµX × κX) ◦ 〈(τ2)Σ∗X ,Σπ2〉

by monotonicity of Bµ and assumption. Now using the definition of (τ †1)X , it
easily follows by induction on terms in Σ∗(BX ×X) that (τ †1)X ≤ (τ †2)X , and thus
π1 ◦ (τ †1)X ≤ π1 ◦ (τ †2)X .

Because ϕ is monotone, it has a least fixed point, which we denote by lfp(ϕ).
Further, since ϕ preserves monotonicity we obtain monotonicity of lfp(ϕ) by trans-
finite induction (the base case and limit steps are rather easy). The proof technique
of transfinite induction, which we also use several times below, is justified by the
fact that the least fixed point of a monotone function in a complete lattice can
be constructed as the supremum of an ascending chain obtained by iterating the
function over the ordinals (see, e.g., [San12a]).

128 Chapter 6. Bialgebraic semantics with equations

Corollary 6.2.7. The abstract GSOS specification lfp(ϕ) is monotone.

Informally, lfp(ϕ) is the specification consisting of rules from ρ and ∆. We
proceed to prove that the operational model of the least fixed point of ϕ is precisely
the interpretation of ρ and ∆ (the least fixed point of ψ as given in Definition 6.1.7),
i.e., that M(lfp(ϕ)) = lfp(ψ). First, we show that M(lfp(ϕ)) is a fixed point of ψ.

Lemma 6.2.8. The operational modelM(lfp(ϕ)) of the specification lfp(ϕ) is a (ρ,∆)-
model, i.e., ψ(M(lfp(ϕ))) = M(lfp(ϕ)).

Proof. Let f = M(lfp(ϕ)). We must show that ψ(f) = f .

f ◦ κ∅
= Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈f, id〉
= Bµ∅ ◦ (ρ ∨

∨
d∈∆ π1 ◦ (lfp(ϕ))† ◦ dB×Id)Σ∗∅ ◦ Σ〈f, id〉

= Bµ∅ ◦ (ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆ π1 ◦ (lfp(ϕ))†Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉)

= Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆Bµ∅ ◦ π1 ◦ (lfp(ϕ))†Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉

where the first equality holds by definition of M , the second since lfp(ϕ) is a fixed
point of ϕ, the third holds by the definition of the join on natural transformations
and the last one holds by the fact the Bµ∅ preserves joins. For the right-hand part,
we have∨

d∈∆Bµ∅ ◦ π1 ◦ (lfp(ϕ))†Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉
=

∨
d∈∆ π1 ◦Bµ∅ × µ∅ ◦ (lfp(ϕ))†Σ∗∅ ◦ Σ∗〈f, id〉 ◦ dΣ∗∅ naturality of d, π1

=
∨
d∈∆ π1 ◦ 〈f, id〉 ◦ µ∅ ◦ dΣ∗∅ (Σ∅∗, µ∅, 〈f, id〉) is a

=
∨
d∈∆ f ◦ µ∅ ◦ dΣ∗∅ (lfp(ϕ))†-bialg.

Thus f ◦κ∅ = Bµ∅◦ρΣ∗∅◦Σ〈f, id〉∨
∨
d∈∆ f ◦µ∅◦dΣ∗∅ = ψ(f)◦κ∅ and consequently

ψ(f) = f , since κ∅ is an isomorphism.

We proceed to show that M(lfp(ϕ)) ≤ lfp(ψ). Since ψ(M(lfp(ϕ))) = M(lfp(ϕ))
by the above Lemma 6.2.8, we then have M(lfp(ϕ)) = lfp(ψ) (Theorem 6.2.14).
The main step is that any fixed point of ψ is “closed under ρ”, i.e., that in such a
model, all the behaviour that we can derive by the specification is already there.
This result is the contents of Corollary 6.2.13 below; it follows by transfinite in-
duction from Lemma 6.2.11 and 6.2.12. But first, we need a few technical tools
(Lemma 6.2.9 and 6.2.10). Recall from Section 3.4 that a Σ-algebra α : ΣX → X
induces an algebra α̂ : Σ∗X → X for the free monad. This construction preserves
algebra morphisms. We prove a lax version of this fact.

Lemma 6.2.9. Let α : ΣX → X and β : ΣY → Y be algebras, such that Y carries a
partial order ≤ and β is monotone. Then for any function f : X → Y :

ΣX
Σf //

α

��
≥

ΣY

β

��
X

f
// Y

implies

Σ∗X
Σ∗f //

α̂

��
≥

Σ∗Y

β̂

��
X

f
// Y

6.2. Integrating assignment rules in abstract GSOS 129

Proof. Suppose β ◦Σf ≤ f ◦α. The proof is by induction on t ∈ Σ∗X. For the base
case t = ηX(s) ∈ Σ∗X, we have an equality, without using the assumption:

β̂ ◦ Σ∗f ◦ ηX(s) = β̂ ◦ ηY ◦ f(s) = f(s) = f ◦ α̂ ◦ ηX(s) .

Now suppose σ ∈ Σ is of arity n, and for some t1, . . . , tn ∈ Σ∗X, we have β̂ ◦
(Σ∗f)(ti) ≤ f ◦ α̂(ti) for all i with 1 ≤ i ≤ n. Then

β̂ ◦ Σ∗f ◦ κX(σ(t1, . . . , tn))

= β̂ ◦ κY ◦ ΣΣ∗f(σ(t1, . . . , tn)) naturality κ
= β̂ ◦ κY (σ(Σ∗f(t1), . . . ,Σ∗f(tn))) definition Σ

= β ◦ Σβ̂(σ(Σ∗f(t1), . . . ,Σ∗f(tn))) definition β̂
= β(σ(β̂ ◦ Σ∗f(t1), . . . , β̂ ◦ Σ∗f(tn))) definition Σ
≤ β(σ(f ◦ α̂(t1), . . . , f ◦ α̂(tn))) ind. hypothesis, monotonicity β
= β ◦ Σf ◦ Σα̂(σ(t1, . . . , tn)) definition Σ
≤ f ◦ α ◦ Σα̂(σ(t1, . . . , tn)) assumption
= f ◦ α̂ ◦ κX(σ(t1, . . . , tn)) definition α̂

which concludes the induction step.

We instantiate the above lemma to the definition of τ †.

Lemma 6.2.10. Let τ be a monotone abstract GSOS specification of Σ over B. Then
for any f : Σ∗∅ → BΣ∗∅:

ΣΣ∗∅
Σ〈f,id〉//

κ∅

��

≥

Σ(BΣ∗∅ × Σ∗∅)

τΣ∗∅

��
BΣ∗Σ∗∅

Bµ∅

��
Σ∗∅

f
// BΣ∗∅

implies

Σ∗Σ∗∅
Σ∗〈f,id〉//

µ∅

��

≥

Σ∗(BΣ∗∅ × Σ∗∅)

τ†
Σ∗∅
��

BΣ∗Σ∗∅ × Σ∗Σ∗∅

Bµ∅×µ∅
��

Σ∗∅ 〈f,id〉
// BΣ∗∅ × Σ∗∅

Proof. From the assumption it follows that

(Bµ∅ × κ∅) ◦ 〈τΣ∗∅,Σπ2〉 ◦ Σ〈f, id〉 ≤ 〈f, id〉 ◦ κ∅ .

Let β = (Bµ∅ × κ∅) ◦ 〈τΣ∗∅,Σπ2〉, then by Lemma 6.2.9 we get

Σ∗Σ∗∅
µ∅

��

Σ∗〈f,id〉 //

≥

Σ∗(BΣ∗∅ × Σ∗∅)

β̂

��
Σ∗∅ 〈f,id〉

// BΣ∗∅ × Σ∗∅

130 Chapter 6. Bialgebraic semantics with equations

where β̂ is the Σ∗-algebra induced by the Σ-algebra β = (Bµ∅ × κ∅) ◦ 〈τΣ∗∅,Σπ2〉.
Thus, it only remains to prove that β̂ = (Bµ∅ × µ∅) ◦ τ †Σ∗∅.

To this end, consider the following diagram:

ΣΣ∗(BΣ∗∅ × Σ∗∅)
Στ†

Σ∗∅//

κBΣ∗∅×Σ∗∅

��

Σ(BΣ∗Σ∗∅ × Σ∗Σ∗∅)

〈τΣ∗Σ∗∅,Σπ2〉
��

Σ(Bµ∅×µ∅) // Σ(BΣ∗∅ × Σ∗∅)

〈τΣ∗∅,Σπ2〉
��

BΣ∗Σ∗Σ∗∅ × ΣΣ∗Σ∗∅

BµΣ∗∅×κΣ∗∅

��

BΣ∗µ∅×Σµ∅ // BΣ∗Σ∗∅ × ΣΣ∗∅

Bµ∅×κ∅
��

Σ∗(BΣ∗∅ × Σ∗∅)
τ†
Σ∗∅ // BΣ∗Σ∗∅ × Σ∗Σ∗∅

Bµ∅×µ∅ // BΣ∗∅ × Σ∗∅

BΣ∗∅ × Σ∗∅

ηBΣ∗∅×Σ∗∅

OO

BηΣ∗∅×ηΣ∗∅

44jjjjjjjjjjjjjjjj

The upper right rectangle commutes by naturality, the lower right rectangle com-
mutes by the multiplication law of the monad and since µ∅ = κ̂∅. The left square
and triangle commute by definition of τ † (Equation (3.15) in Section 3.5.2). Thus
(Bµ∅× µ∅) ◦ τ †Σ∗∅ is an algebra homomorphism extending id, and since β̂ is by def-
inition an algebra homomorphism extending id and homomorphic extensions are
unique, we have β̂ = Bµ∅ × µ∅ ◦ τ †Σ∗∅.

Lemma 6.2.11. Let τ be a specification, and f ∈M a fixed point of ψ. If Bµ∅ ◦τΣ∗∅ ◦
Σ〈f, id〉 ≤ f ◦ κ∅ then Bµ∅ ◦ ϕ(τ)Σ∗∅ ◦ Σ〈f, id〉 ≤ f ◦ κ∅.

Proof.

Bµ∅ ◦ ϕ(τ)Σ∗∅ ◦ Σ〈f, id〉

= Bµ∅ ◦ (ρ ∨
∨
d∈∆

π1 ◦ τ † ◦ dB×Id)Σ∗∅ ◦ Σ〈f, id〉

= Bµ∅ ◦ (ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

π1 ◦ τ †Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉)

= Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

Bµ∅ ◦ π1 ◦ τ †Σ∗∅ ◦ dBΣ∗∅×Σ∗∅ ◦ Σ〈f, id〉

= Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

π1 ◦ (Bµ∅ × µ∅) ◦ τ †Σ∗∅ ◦ Σ∗〈f, id〉 ◦ dΣ∗∅

≤ Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

π1 ◦ 〈f, id〉 ◦ µ∅ ◦ dΣ∗∅

= Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
d∈∆

f ◦ µ∅ ◦ dΣ∗∅

= ψ(f) ◦ κ∅ = f ◦ κ∅

6.2. Integrating assignment rules in abstract GSOS 131

The first equality holds by definition of ϕ, the second by definition of the join of
specifications, the third since Bµ∅ is join-preserving, and the fourth equality by
naturality of d and π1. The inequality holds by assumption and Lemma 6.2.10. The
last equality holds by definition of ψ.

Lemma 6.2.12. Let f ∈M such that ψ(f) = f , and suppose we have a family {τi}i∈I
of specifications, for some index set I. If Bµ∅ ◦ (τi)Σ∗∅ ◦Σ〈f, id〉 ≤ f ◦κ∅ for all i ∈ I,
then Bµ∅ ◦ (

∨
i∈I τi)Σ∗∅ ◦ Σ〈f, id〉 ≤ f ◦ κ∅ .

Proof. Since Bµ∅ preserves joins we have

Bµ∅ ◦ (
∨
i∈I

τi)Σ∗∅ ◦ Σ〈f, id〉 =
∨
i∈I

Bµ∅ ◦ (τi)Σ∗∅ ◦ Σ〈f, id〉

and the result now follows by the assumption that Bµ∅ ◦ (τi)Σ∗∅ ◦Σ〈f, id〉 ≤ f ◦ κ∅
for each i.

Corollary 6.2.13. For any f ∈M: if ψ(f) = f then

ΣΣ∗X
Σ〈f,id〉//

κ∅

��

≥

Σ(BΣ∗∅ × Σ∗∅)

lfp(ϕ)Σ∗∅

��
BΣ∗Σ∗∅

Bµ∅

��
Σ∗X

f
// BΣ∗∅

Proof. By transfinite induction. For the base case we have Bµ∅ ◦ ⊥ ◦ Σ〈f, id〉 =
⊥ ≤ f ◦ κ∅. The successor step is given by Lemma 6.2.11 and the limit step by
Lemma 6.2.12.

This allows to prove the main result of this chapter.

Theorem 6.2.14. The interpretation of ρ and ∆ coincides with the operational model
of the abstract GSOS specification lfp(ϕ), i.e., M(lfp(ϕ)) = lfp(ψ).

Proof. By Lemma 6.2.8, M(lfp(ϕ)) is a fixed point of ψ. To show it is the least one,
let f be any fixed point of ψ; we proceed to prove M(lfp(ϕ)) ≤ f by structural
induction on closed terms. Suppose σ ∈ Σ is an operator of arity n, and suppose
we have t1, . . . , tn ∈ Σ∗∅ such that M(lfp(ϕ))(ti) ≤ f(ti) for all i with 1 ≤ i ≤ n
(note that this trivially holds in the base case, when n = 0). Then

M(lfp(ϕ))(σ(t1, . . . , tn)) = Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈M(lfp(ϕ)), id〉(σ(t1, . . . , tn))

≤ Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈f, id〉(σ(t1, . . . , tn))

≤ f(σ(t1, . . . , tn))

where the first inequality holds by assumption and monotonicity of Bµ∅ and lfp(ϕ)
(Corollary 6.2.7) and the second by Corollary 6.2.13.

132 Chapter 6. Bialgebraic semantics with equations

As a consequence, the interpretation of ρ and ∆ is well-behaved.

Corollary 6.2.15. Bisimilarity is a congruence on the interpretation lfp(ψ) of ρ and
∆, and bisimulation up to context is compatible (i.e., the contextual closure is blfp(ψ)-
compatible).

Example 6.2.16. The parallel composition can be given by a positive GSOS spec-
ification, and Equation (6.1) of the introduction contains a rule for the replication
operator. Thus, by the above Corollary, bisimilarity is a congruence on the opera-
tional model of CCS with replication, and bisimulation up to context is compatible;
this is known (see, e.g., [San12a]), but here we obtain it directly from the format
and the above results.

Example 6.2.17. We revisit the general process algebra with transition costs (GPA)
(see Example 4.5.5, [BK01]). We consider basic GPA processes with procedures,
defined by the grammar t ::= 0 | t + t | (a, r).t | p where a ranges over the set of
actions A, r ranges over the positive real numbers R+ and p ranges over a fixed set
of procedure names PNames. We assume that each procedure name pi ∈ PNames
has a body ti ∈ P .

The operational semantics of the operators of basic GPA processes on the com-
plete monoid R+ ∪ {∞} (with supremum) is similar to the semantics in Exam-
ple 4.5.5. The semantics corresponds to a GSOS specification; see [Kli11] for
details. This specification is monotone. The (recursive) procedures can now be
interpreted by assignment rules: for each pi ∈ PNames we add an assignment rule
pi := ti. Intuitively this means that the procedure call pi is given by the behaviour
of its body ti, as expected. By Theorem 6.2.14, bisimilarity is a congruence on the
interpretation.

6.3 Structural congruences

The assignment rules considered in the theory of the previous sections copy be-
haviour from a term to an operator, but this assignment goes one way only. In this
section, we consider the combination of abstract GSOS specifications with actual
equations, interpreted by the structural congruence rule. By encoding equations in
a restricted format as assignment rules, we obtain that the interpretation of any
specification with equations in this format is well-behaved.

Equations are elements of Σ∗V × Σ∗V , where V is an arbitrary but fixed set of
variables. A set of equations E ⊆ Σ∗V × Σ∗V induces a congruence ≡E:

Definition 6.3.1. Let E ⊆ Σ∗V ×Σ∗V be a set of equations. The congruence closure
≡E of E is the least relation on Σ∗∅ satisfying the following rules:

t E u s : V → Σ∗∅
s](t) ≡E s](u) t ≡E t

u ≡E t

t ≡E u

t ≡E u u ≡E v

t ≡E v

t1 ≡E u1 . . . tn ≡E un
σ(t1, . . . , tn) ≡E σ(u1, . . . , un)

for each σ ∈ Σ, n = |σ|

6.3. Structural congruences 133

where s] : Σ∗V → Σ∗∅ is the inductive extension of s to terms (Section 3.4).

In the context of structural operational semantics, equations are often inter-
preted by the structural congruence rule:

t ≡E u u
a−→ u′ u′ ≡E v

t
a−→ v

(6.7)

Informally, this rule states that we can use the specification to derive transitions
modulo the congruence generated by the equations. In fact, removing the part
u′ ≡E v from the premise (and writing u′ instead of v in the conclusion) does not
affect the behaviour, modulo bisimilarity [MR05]. See [MR05] for details on the
interpretation of structural congruences in the context of transition systems.

We denote by (Σ∗∅)/ ≡E the set of equivalence classes, and by q : Σ∗∅ →
(Σ∗∅)/≡E the quotient map of ≡E (we remark that one can equip (Σ∗∅)/≡E
with an algebra structure µ′ such that q is a Σ∗-algebra homomorphism). Thus
q(t) = q(u) iff t ≡E u. Assuming the axiom of choice, we have t ≡E u iff there is a
right inverse r : (Σ∗∅)/≡E→ Σ∗∅ such that r(q(t)) = u. The latter fact is exploited
in the interpretation of a specification together with a set of equations.

Definition 6.3.2. Let θ : M→M be the (unique) function such that

θ(f) ◦ κ∅ = Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈f, id〉 ∨
∨
r∈R

f ◦ r ◦ q ◦ κ∅ .

where R is the set of right inverses of q. A (ρ,E)-model is a coalgebra f ∈ M such
that θ(f) = f .

Lemma 6.3.3. The function θ : M→M is monotone.

Proof. Similar to the proof of Lemma 6.1.8.

Definition 6.3.4. The interpretation of ρ and E is the least (ρ,E)-model, i.e., lfp(θ).

Example 6.3.5. Consider the specification of the parallel composition x|y as given
in (6.2) in the introduction of this chapter, i.e., by a single rule and commutativity.
In the interpretation, if t a−→ t′ then t|u a−→ t′|u, simply by the SOS rule. But also
u|t a−→ t′|u, since t|u ≡E u|t. Concerning the definition of the replication operator
by the equation !x = !x|x, for a term t the interpretation contains the least set of
transitions from !t which satisfy the equation, as desired.

In general, bisimilarity is not a congruence when equations are added. For
convenience we recall a counterexample on transition systems [MR05].

Example 6.3.6. Consider rules p a−→ p and q a−→ p and the single equation p = σ(q),
where p, q are constants, σ is a unary operator and a is an arbitrary label. In the
interpretation, p is bisimilar to q, but σ(p) is not bisimilar to σ(q).

134 Chapter 6. Bialgebraic semantics with equations

The above counterexample is based on assigning behaviour to the term σ(q),
rather than defining each operator independently of its arguments. To rule out such
assignments, a restricted format of equations was introduced in [MR05], called
cfsc. The main result of [MR05] is that for any specification in the tyft format
combined with cfsc equations, bisimilarity is a congruence.

Definition 6.3.7. A set of equations E ⊆ Σ∗V × Σ∗V is in cfsc with respect to ρ if
every equation is of one of the following forms:

1. A σx-equation: σ1(x1, . . . , xn) = σ2(y1, . . . , yn), where σ1, σ2 ∈ Σ are of arity
n (possibly σ1 = σ2), x1, . . . , xn are distinct variables and y1, . . . , yn is a
permutation of x1, . . . , xn.

2. A defining equation: σ(x1, . . . , xn) = t where σ ∈ Σ and t is an arbitrary
term (which may involve σ again); x1, . . . , xn are distinct variables, and all
variables that occur in t are in x1, . . . , xn. Moreover σ does not appear in
any other equation in E, and ρX(σ(u1, . . . , un)) = ⊥ for any set X and any
u1, . . . , un ∈ BX ×X.

A σx-equation allows to assign simple algebraic properties to operators which
already have behaviour; the prototypical example here is commutativity, like in the
specification of the parallel composition in (6.2). With a defining equation, as the
name suggests, one can define the behaviour of an operator. An example is !x =
!x|x; another example is p = q|z|a.p where p, q and z are constants. Further, the
procedure declarations of Example 6.2.17 can be modelled by defining equations.
Associativity of | is neither a σx-equation nor a defining one. We refer to [MR05]
for arguments that the cfsc format cannot be trivially extended. The cfsc format
depends on an abstract GSOS specification: operators at the left hand side of a
defining equation should not get any behaviour in the specification. This restriction
ensures that one can not assign behaviour to complex terms, disallowing a situation
such as in Example 6.3.6.

We proceed to show that the interpretation of an abstract GSOS specification ρ
and a set of equationsE in cfsc equals the operational model of a certain other spec-
ification, up to bisimilarity (Definition 4.4.10). This is done by encoding equations
in this format as assignment rules, and using the theory of the previous section to
obtain the desired result.

First, note that for any σx-equation σ1(x1, . . . , xn) = σ2(y1, . . . , yn), the vari-
ables on one side are a permutation of the variables on the other, hence a σx-
equation can equivalently be represented as a triple (σ1, σ2, p) where p : Idn → Idn

is the natural transformation corresponding to the permutation of variables in the
equation.

Definition 6.3.8. A set of equations E in cfsc defines a set of assignment rules ∆E

as follows:

1. For every σx-equation (σ1, σ2, p) we define d and d′ on a component X as

dX(σ(u1, . . . , un)) =

{
σ2(pX(u1, . . . , un)) if σ = σ1

σ(u1, . . . , un) otherwise

6.3. Structural congruences 135

for all u1, . . . , un ∈ X, and d′ is similarly defined using the inverse permuta-
tion p−1, with and σ1 and σ2 swapped.

2. For every defining equation σ1(x1, . . . , xn) = t we define a corresponding
assignment rule

dX(σ(u1, . . . , un)) =

{
t[x1 := u1, . . . , xn := un] if σ = σ1

σ(u1, . . . , un) otherwise

for any set X and all u1, . . . , un ∈ X.

Remark 6.3.9. In [MR05], σx-equations are a bit more liberal in that they do not
require the arities of σ1 and σ2 to coincide, and do allow variables which only
occur on one side of the equation. But in the interpretation these variables are
quantified universally over closed terms; thus, we can encode this using infinitely
many assignment rules. For example, an equation σ1(x) = σ2(x, y) can be encoded
by the set of assignment rules, one for each term t ∈ Σ∗∅mapping σ1(x) to σ2(x, t).
We work with the simpler format above for technical convenience.

We prove that the encoding of equations as assignment rules is correct with
respect to the interpretation of the equations (Theorem 6.3.13). First, we show
that if σ(x1, . . . , xn) = t is a defining equation of a set of equations in the cfsc
format, then the behaviour of σ(x1, . . . , xn) will be below that of t.

Lemma 6.3.10. Let E be a set of equations in cfsc format w.r.t. ρ, and let ψ be as in
Definition 6.1.7 for (ρ,∆E). Then for any defining equation σ(x1, . . . , xn) = t and
any t1, . . . , tn ∈ Σ∗∅: lfp(ψ) ◦ κ∅(σ(t1, . . . , tn)) ≤ lfp(ψ) ◦ µ∅(t[x1 := t1, . . . , xn :=
tn]).

Proof. Given a defining equation, let d ∈ ∆E be the natural transformation that
encodes it (see Definition 6.3.8(2)). We prove by transfinite induction that for
any function g ∈ M that arises in the iterative construction of lfp(ψ) and for any
t1, . . . , tn ∈ Σ∗∅ we have

g ◦ κ∅(σ(t1, . . . , tn)) ≤ lfp(ψ) ◦ µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn)) . (6.8)

The base case is when g = ⊥, which is trivial. Now suppose that (6.8) holds for
some g ≤ lfp(ψ). Then

ψ(g)◦κ∅(σ(t1, . . . , tn)) = (Bµ∅ ◦ρΣ∗∅ ◦Σ〈g, id〉∨
∨

d′∈∆E

g ◦µ∅ ◦d′Σ∗∅)(σ(t1, . . . , tn)) .

But since the equations are in cfsc format, we have

Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈g, id〉(σ(t1, . . . , tn)) = ⊥ . (6.9)

Moreover, again by the cfsc format, σ(t1, . . . , tn) does not occur in any equation
other than the defining one in E, and thus for all d′ ∈ ∆E with d′ 6= d we have

g ◦ µ∅ ◦ d′Σ∗∅(σ(t1, . . . , tn)) = g ◦ κ∅(σ(t1, . . . , tn))

136 Chapter 6. Bialgebraic semantics with equations

which is below lfp(ψ) ◦ µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn)) by the induction hypothesis (6.8).
Together with the assumption that g ≤ lfp(ψ) this implies∨

d′∈∆E

g ◦ µ∅ ◦ d′Σ∗∅(σ(t1, . . . , tn)) ≤ lfp(ψ) ◦ µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn)) .

By the above and (6.9), we may conclude

ψ(g) ◦ κ∅(σ(t1, . . . , tn)) ≤ lfp(ψ) ◦ µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn))

as desired. This concludes the successor step; the limit step is again trivial (i.e., if
we assume that (6.8) holds for a family of functions, then it also holds for the join
of these functions).

The following lemma is the main step for the correctness of the encoding of
equations as assignment rules.

Lemma 6.3.11. Let E and ψ be as above. If t ≡E u then Bq ◦ (lfp(ψ))(t) = Bq ◦
(lfp(ψ))(u), where q is the quotient map of ≡E .

Proof. The proof is by induction on≡E , that is, we show that the set of pairs t ≡E u
that satisfy Bq ◦ (lfp(ψ))(t) = Bq ◦ (lfp(ψ))(u) is closed under each of the defining
rules of ≡E . For reflexivity, transitivity and symmetry this is easy. The important
cases are the two types of cfsc equations from E, and congruence.

For a σx-equation σ1(t1, . . . , tn) ≡E σ2(u1, . . . , un), by definition of ∆E there is
an assignment rule d such that µ∅ ◦ dΣ∗∅(σ1(t1, . . . , tn)) = σ2(u1, . . . , un), and by
definition of lfp(ψ) we have lfp(ψ)◦µ∅◦dΣ∗∅ ≤ lfp(ψ); so (lfp(ψ))(σ2(u1, . . . , un)) ≤
(lfp(ψ))(σ1(t1, . . . , tn)). For the converse, there is another assignment rule d′, and
thus (lfp(ψ))(σ1(t1, . . . , tn)) ≤ (lfp(ψ))(σ2(u1, . . . , un)).

For a defining equation σ(t1, . . . , tn) ≡E t we have a natural transformation
in d such that µ∅ ◦ dΣ∗∅(σ(t1, . . . , tn)) = t. Thus (lfp(ψ))(t) = (lfp(ψ)) ◦ µ∅ ◦
dΣ∗∅(σ(t1, . . . , tn)) ≤ (lfp(ψ))(σ(t1, . . . , tn)). The other way around follows by
Lemma 6.3.10. So (lfp(ψ))(t) = (lfp(ψ))(σ(t1, . . . , tn)).

Finally, for the congruence rule, suppose there are terms t1, . . . , tn, u1, . . . , un
such that ti ≡ ui and Bq ◦ (lfp(ψ))(ti) = Bq ◦ (lfp(ψ))(ui) for all i ≤ n, and σ is an
operator of arity n. Notice that this implies

〈Bq ◦ lfp(ψ), q〉(ti) = 〈Bq ◦ lfp(ψ), q〉(ui) for all i ≤ n (6.10)

since q(ti) = q(ui) for each i. Now

Bq ◦ (lfp(ψ))(σ(t1, . . . , tn))
= Bq ◦Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈lfp(ψ), id〉(σ(t1, . . . , tn)) Theorem 6.2.14
= Bµ′ ◦BΣ∗q ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈lfp(ψ), id〉(σ(t1, . . . , tn)) q alg. morphism
= Bµ′ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ(Bq × q) ◦ Σ〈lfp(ψ), id〉(σ(t1, . . . , tn)) naturality
= Bµ′ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈Bq ◦ lfp(ψ), q〉(σ(t1, . . . , tn)) functoriality
= Bµ′ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈Bq ◦ lfp(ψ), q〉(σ(u1, . . . , un)) ind. hypothesis
= Bq ◦Bµ∅ ◦ (lfp(ϕ))Σ∗∅ ◦ Σ〈lfp(ψ), id〉(σ(u1, . . . , un))
= Bq ◦ (lfp(ψ))(σ(u1, . . . , un))

6.3. Structural congruences 137

Notice that we used the fact that the quotient map q is an algebra morphism into
some Σ∗-algebra µ′. It is worthwhile to note that we need to reason up to ≡E to
get (6.10). Indeed, 〈lfp(ψ), id〉(ti) = 〈lfp(ψ), id〉(ui) does not hold in general, since
ti is only congruent to ui, not necessary equal.

This allows to prove that lfp(ψ) and lfp(θ) coincide “up to ≡E”.

Lemma 6.3.12. Let ψ and q be as above. Then Bq ◦ (lfp(θ)) = Bq ◦ (lfp(ψ)).

Proof. We first prove that ψ(lfp(θ)) ≤ lfp(θ). The interesting part is to show that
lfp(θ) ◦ µ∅ ◦ dΣ∗∅ ≤ lfp(θ) ◦ κ∅ for any d ∈ ∆E , given that

∨
r∈R lfp(θ) ◦ r ◦ q ◦ κ∅ ≤

lfp(θ) ◦ κ∅ (which holds since lfp(θ) is a fixed point of θ). But this is simple, given
that each d acts on an argument either as the identity or by an equation in E.
Thus ψ(lfp(θ)) ≤ lfp(θ), and since lfp(ψ) is the least pre-fixed point of ψ we have
lfp(ψ) ≤ lfp(θ). Hence Bq ◦ lfp(ψ) ≤ Bq ◦ lfp(θ).

We proceed to show Bq ◦ lfp(θ) ≤ Bq ◦ lfp(ψ) by transfinite induction; the main
step is to prove that Bq◦h ≤ Bq◦ lfp(ψ) implies Bq◦θ(h) ≤ Bq◦ lfp(ψ). So suppose
Bq ◦ h ≤ Bq ◦ lfp(ψ). Then

Bq ◦ θ(h) ◦ κ∅ = Bq ◦ (Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈h, id〉 ∨
∨
r∈R

h ◦ r ◦ q ◦ κ∅)

= Bq ◦Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈h, id〉 ∨
∨
r∈R

Bq ◦ h ◦ r ◦ q ◦ κ∅

Now

Bq ◦Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈h, id〉 = Bµ′ ◦BΣ∗q ◦ ρΣ∗∅ ◦ Σ〈h, id〉
= Bµ′ ◦ ρΣ∗∅ ◦ Σ(Bq × q) ◦ Σ〈h, id〉
≤ Bµ′ ◦ ρΣ∗∅ ◦ Σ(Bq × q) ◦ Σ〈lfp(ψ), id〉
= Bq ◦Bµ∅ ◦ ρΣ∗∅ ◦ Σ〈lfp(ψ), id〉
≤ Bq ◦ lfp(ψ) ◦ κ∅

where µ′ is the algebra structure induced by q. The first inequality holds by as-
sumption (Bq ◦h ≤ Bq ◦ lfp(ψ)) and the second one by the fact that lfp(ψ) is a fixed
point of ψ and by monotonicity of Bq. Moreover∨

r∈R
Bq ◦ h ◦ r ◦ q ◦ κ∅ ≤

∨
r∈R

Bq ◦ lfp(ψ) ◦ r ◦ q ◦ κ∅ = Bq ◦ lfp(ψ) ◦ κ∅

by assumption and Lemma 6.3.11. Thus Bq ◦ θ(h) ≤ Bq ◦ lfp(ψ) as desired.

This implies that lfp(θ) and lfp(ψ) are behaviourally equivalent up to ≡E . Recall
that behavioural equivalence coincides with bisimilarity whenever the functor B
preserves weak pullbacks (Lemma 3.1.6). Under this assumption one can prove
that lfp(θ) is equal to lfp(ψ) up to bisimilarity, and by Theorem 6.2.14 we then
obtain our main result of this section.

138 Chapter 6. Bialgebraic semantics with equations

Theorem 6.3.13. Suppose E is a set of equations which is in cfsc format w.r.t. ρ,
and suppose the behaviour functor B preserves weak pullbacks. Then the interpre-
tation lfp(θ) of ρ and E equals the operational model of a certain abstract GSOS
specification, up to bisimilarity (Definition 4.4.10). Bisimilarity is a congruence, and
bis ◦ ctx ◦ bis is blfp(θ)-compatible.

Proof. Using the universal property of the coequalizer q : Σ∗∅ → (Σ∗∅)/≡E , by
Lemma 6.3.11 we obtain a unique coalgebra structure on (Σ∗∅)/≡E turning q into
a homomorphism:

≡E
π1 //
π2

// Σ∗∅

lfp(ψ)

��

q // (Σ∗∅)/≡E

���
�
�

BΣ∗∅
Bq // B(Σ∗∅)/≡E

Further, by Lemma 6.3.12, q is also a homomorphism from lfp(θ) into the same
coalgebra. Now the pullback (in Set) of q along itself is simply ≡E , and since B
preserves weak pullbacks, ≡E is a bisimulation between lfp(ψ) and lfp(θ) [Rut00,
Theorem 4.3]. Thus, in particular, lfp(ψ) and lfp(θ) are equal up to bisimilarity,
since ≡E is reflexive.

By Theorem 6.2.14, bisimilarity is a congruence on lfp(ψ). Since lfp(ψ) and
lfp(θ) are equal up to bisimilarity, it follows from Lemma 4.4.11 that bisimilarity is
a congruence on lfp(θ). Finally, again by Theorem 6.2.14, ctx is blfp(ψ)-compatible.
Thus, by Lemma 4.4.12, bis ◦ ctx ◦ bis is blfp(θ)-compatible.

6.4 Discussion and related work

We extended Turi and Plotkin’s bialgebraic approach to operational semantics with
non-structural assignment rules and structural congruence, providing a general
coalgebraic framework for monotone abstract GSOS with equations. Technically,
our results are based on the combination of bialgebraic semantics with order. Our
main result is that the interpretation of a specification involving assignment rules
is well-behaved, in the sense that bisimilarity is a congruence and bisimulation-up-
to techniques are sound. This result carries over to specifications with structural
congruence in the cfsc format proposed in [MR05].

The main work in the literature that treats the meta-theory of rule formats with
structural congruences [MR05] focuses on labelled transition systems, whereas our
results apply to coalgebras in general (for behaviour functors with a complete lat-
tice structure). Concerning transition systems, the basic rule format in [MR05]
is tyft/tyxt2, which is more expressive than positive GSOS since it allows looka-
head in the premises. However, while [MR05] proves congruence of bisimilarity
this does not imply the compatibility (or even soundness) of bisimulation up to

2In [MR05], it is sketched how to extend the results to the ntyft/ntyxt, which involves however a
complicated integration of the cfsc format with the notion of stable model.

6.4. Discussion and related work 139

context [PS12], which we obtain in the present work (and which is, in fact, prob-
lematic in the presence of lookahead).

Plotkin proposed to model recursion by interpreting abstract GSOS in the cate-
gory of complete partial orders [Plo01]. Klin [Kli04] showed that by moving to cat-
egories enriched in complete partial orders, one can interpret recursive constructs
which have a similar form as our assignment rules. Technically our approach is
different as it is based on an order on the behaviour functor, rather than interpret-
ing everything in an ordered setting and using an infinite unfolding of terms, as is
done in [Kli04]. Further, in [Kli04] each operator is either specified by an equa-
tion or by operational rules, disallowing a specification such as that of the parallel
composition in equation (6.2).

In [LPW04], various constructions on distributive laws are presented. Exam-
ple 32 of that paper discusses the definition of the parallel composition as in (6.2)
above, but a general theory for structural congruence is missing. Distributive laws
are applied in [Jac06b] to find solutions of guarded recursive equations. Further,
in [MMS13] recursive equations are interpreted in the context of iterative algebras,
where operations of interest are given by an abstract GSOS specification. That
work seems to focus mainly on solutions to guarded equations, but the precise
connection to the present work remains to be understood. In [BM02, CHM02], it
is shown how to lift calculi with structural axioms to coalgebraic models, but under
the assumption that the equations already hold.

There are several directions for future work. First, our techniques can possi-
bly be extended to allow lookahead in premises by using cofree comonads (see,
e.g., [Kli11]). While in general the combined use of cofree comonads and free
monads in specifications is known to be problematic [KN14], we expect that part
of these problems may be addressed by considering only positive (monotone) spec-
ifications. In fact, this could form the basis for a bialgebraic account of the tyft
format. Second, in the current work we only consider free monads. One may in-
corporate equations which already hold, for instance by using the theory of the
next chapter.

At a more fundamental level, we believe that the combination of bialgebraic
semantics with ordered structures is an exciting direction of research which is yet
to be explored. In the current chapter, we developed this theory only in a relatively
concrete manner, by focusing on Set functors and only specifications where the
syntax is given by a signature. A more abstract categorical perspective, for instance
in terms of order enriched categories, could potentially clean up and generalize
some of the technical development of this chapter. Such a generalization could be
of interest, for instance, to study structural congruences for calculi with names.

Chapter 7

Presenting distributive laws

In the current chapter, we study distributive laws of monads over functors. These
capture interaction between algebraic structure and observable behaviour in a sys-
tematic way. There are several benefits of this approach, recalled in more detail
in Section 3.5: a distributive law canonically induces an algebra on the final coal-
gebra, provides a compositional semantics, and yields solutions to recursive equa-
tions. Moreover, distributive laws play a central role in the framework of up-to
techniques introduced in the first part of this thesis.

However, concretely describing a distributive law of a monad over a functor
and proving the associated axioms can be rather complicated. Instead, one may try
to use general methods for constructing distributive laws from simpler ingredients.
An important example of this is given by abstract GSOS, where distributive laws
are represented by plain natural transformations. Further, in [HK11] it was shown
how an abstract GSOS specification for a functor B can be lifted to one for the
functor (B−)A which describes B-systems with input in A. Another method, which
works for all monads on Set but only for certain polynomial behaviour functors B,
produces a distributive law inducing a “pointwise lifting” of the algebra structure
to B-behaviours [Jac06b, SBBR13].

But many examples do not fit into the above mentioned settings. A motivating
example for the current chapter is that of context-free grammars, where sequential
composition is not a pointwise operation and whose formal semantics satisfies the
axioms of idempotent semirings, which is not a free monad. More generally, one
may be interested in distributive laws involving a monad that arises as the quotient
of a free monad with respect to some equations.

We give a general approach for constructing a distributive law λE for a monad
T E , which is presented as a quotient of a monad T by some equations E , from a
distributive law λ for the monad T . In the typical application of our result, T is a
free monad, so that λ can in turn be defined in terms of an abstract GSOS specifi-
cation. Then λE is obtained as a certain quotient of λ by the equations E , hence we
say that λE is presented by λ and the equations E . We show that such quotients exist
when the distributive law preserves the equations E , which roughly means that con-

141

142 Chapter 7. Presenting distributive laws

gruences generated by the equations are bisimulations. We also discuss how these
quotients of distributive laws give rise to quotients of bialgebras, thereby giving a
concrete operational interpretation. As an illustration and application, we show
the existence of a distributive law of the monad for idempotent semirings over the
deterministic automata functor. This result yields the equivalence between the rep-
resentation of context-free languages via grammars in Greibach normal form and
the coalgebraic representation via context-free expressions given in [WBR13].

Outline. In the next section, we describe in detail how to construct the quotient
of a monad with respect to some given equations. In Section 7.2, we prove our
main results on quotients of distributive laws. Then, in Section 7.3 we show that
such quotients induce quotients of bialgebras. Finally, in Section 7.4 we discuss
related work, and provide some directions for future work.

7.1 Quotients of monads

Let T = (T, η, µ) be a monad on a category C. For a general notion of equations
on a monad, we define T -equations or equations for T as a 3-tuple E = (E, l, r)
where E is an endofunctor on C and l, r : E ⇒ T are natural transformations. The
intuition is that E models the arity of the equations, i.e., the (number of) variables
occurring in each equation, and l and r give the left and right-hand side. The
advantage of using natural transformations (over, say, a subset of TV × TV for
some set of variables V , or a generalization thereof) is that this approach defines
equations on TX uniformly over any set X.

Example 7.1.1. Consider the Set functor ΣX = X × X + 1, modelling a binary
operation and a constant, which we call + and 0 respectively. The (underlying
functor of the) free monad Σ∗ for Σ sends a set X to the terms over X built from
+ and 0. The equations x+0 = x, x+y = y+x and (x+y)+z = x+(y+z) can be
modelled as follows. The functor E is defined as EX = X+(X×X)+(X×X×X).
The natural transformations l, r : E ⇒ Σ∗ are given by lX(x) = x+0 and rX(x) = x
for all x ∈ X; lX(x, y) = x + y and rX(x, y) = y + x for all (x, y) ∈ X × X;
lX(x, y, z) = x+ (y+ z) and rX(x, y, z) = (x+ y) + z for all (x, y, z) ∈ X ×X ×X.
This defines lX and rX uniformly for any set X, which makes naturality of l and r
easy to prove.

A T -algebra (X,α) is said to satisfy E if α ◦ lX = α ◦ rX :

EX
lX //
rX
// TX

α // X .

We denote the full subcategory of T -algebras that satisfy E by (T , E)-Alg.
Throughout this chapter we need assumptions on C, T , and E . This involves

regular epis: an epi is regular if it is the coequalizer of a pair of morphisms.

7.1. Quotients of monads 143

Assumption 7.1.2. We assume that T = (T, η, µ) is a monad on C, and E : C → C
is a functor such that:

1. T -Alg has coequalizers.

2. U maps regular epis in T -Alg to epis in C.

3. EU and TU map regular epis in T -Alg to epis in C.

The first condition is needed to construct quotients of free algebras modulo
equations. The second condition relates quotients of algebras (regular epis) with
quotients in the base category (epis). The last condition is satisfied if condition
(2) holds and E and T preserve epimorphisms in C. If C = Set the conditions
are satisfied for any monad T and endofunctor E. In that case, the first condition
holds since T -Alg is cocomplete if C = Set (see, e.g., [BW05, Proposition 3.4]),
the second condition holds since U preserves regular epis if C = Set (see the proof
of [BW05, Proposition 4.6]), and the third follows from the second, since any Set
functor preserves epis.

Any T -algebra (X,α) can be turned into an algebra that satisfies the equations,
by taking the coequalizer sα of α ◦ l]X and α ◦ r]X in T -Alg, as depicted in the
following diagram:

(TEX,µEX)
l]X //

r]X

// (TX, µX)
α // (X,α)

sα // (X/E , αE) . (7.1)

Since coequalizers are unique only up to isomorphism, we choose sα = id for every
algebra in (T , E)-Alg.

In the case C = Set, the definition of sα (7.1) implies that ker(sα) is the congru-
ence generated by the set Eα = {(α(lX(e)), α(rX(e)) | e ∈ EX}, i.e., it is the least
equivalence relation on X that includes Eα and is a subalgebra of (X,α)× (X,α).
In this sense, the kernel pair of a morphism always yields a congruence, and con-
versely, every congruence relation on an algebra (X,α) is the kernel of the corre-
sponding quotient homomorphism.

In general, the coequalizer (7.1) in T -Alg differs from the one obtained by ap-
plying the forgetful functor U and then computing the coequalizer of α ◦ l]X and
α◦r]X in Set. The coequalizers in T -Alg and Set coincide if the equations are reflex-
ive in the sense that the two parallel maps α ◦ lX and α ◦ rX from EX to X have a
common section, and the forgetful functor U preserves reflexive coequalizers (sec-
tions and reflexive coequalizers are recalled in Section 4.5, above Theorem 4.5.4).
If T is finitary, then U preserves reflexive coequalizers. Moreover, if U preserves re-
flexive coequalizers then T preserves them too, but not every Set-functor preserves
reflexive coequalizers [AKV00, Example 4.3].

The main step to obtain the quotient monad is to show that (T , E)-Alg is a re-
flective subcategory of T -Alg, meaning that the inclusion functor has a left adjoint.
This left adjoint uses the coequalizer in (7.1) to map an algebra to its quotient.

144 Chapter 7. Presenting distributive laws

Lemma 7.1.3. The inclusion V : (T , E)-Alg→ T -Alg has a left adjoint H : T -Alg→
(T , E)-Alg with unit ηα = sα : (X,α) → (X/E , αE) for all α : X → TX in T -Alg,
and counit εα = id the identity for all α ∈ (T , E)-Alg.

Proof. We first show that for any (X,α) in T -Alg, (X/E , αE) is indeed an object in
(T , E)-Alg, i.e., it satisfies the equations. Consider the following diagram:

TEX l]X

��
r]X

��
EX

Esα

��

ηEX

OO

lX //
rX

// TX

Tsα

��

α // X

sα

��
E(X/E)

lX/E //
rX/E

// T (X/E)
αE
// X/E

The right-hand square commutes by the definition of sα as a coequalizer in T -Alg,
see (7.1). The left-hand squares (for l and r respectively) commute by naturality
of l and r. The upper two paths from TEX to X/E commute by definition of sα.
From the above diagram we obtain αE ◦ lX/E ◦ E(sα) = αE ◦ rX/E ◦ E(sα). Since
sα is a regular epi, by Assumption 7.1.2 it follows that E(sα) is an epi, and thus
αE ◦ lX/E = αE ◦ rX/E .

It remains to show that if f : X → Y is an algebra homomorphism from (X,α)
to an algebra (Y, β) in (T , E)-Alg, then there is a unique algebra homomorphism
g : X/E → Y such that g ◦ sα = f . Since (Y, β) satisfies the equations we know
β ◦ lY = β ◦ rY , and thus the following diagram commutes:

TEX l]X

��
r]X

��
EX

ηEX

OO

lX //
rX
//

Ef

��

TX

Tf

��

α // X

f

��

sα // X/E

g

}}{
{

{
{

EY
lY //
rY
// TY

β
// Y

In particular, we have f ◦ α ◦ lX = f ◦ α ◦ rX . Thus f ◦ α ◦ l]X = f ◦ α ◦ r]X , hence
the desired homomorphism g arises from the universal property of the coequalizer
sα : (X,α)→ (X/E , αE).

By defining H : T -Alg → (T , E)-Alg as H(X,α) = (X/E , αE), H is left adjoint
to V , and the unit of the adjunction is η = s. For the counit, we have V (εα)◦sV α =
idV α, and since sV α = idV α then V (εα) = idV α = V (idα), which implies that
εα = idα (V is an inclusion).

By composition of adjoints, the functor UV : (T , E)-Alg → T -Alg → C has a
left adjoint given by X 7→ (TX/E , (µX)E). In what follows, we will write T EX for
TX/E .

7.1. Quotients of monads 145

Definition 7.1.4 (Quotient monad). Given a monad T = (T, η, µ) on C and T -
equations E , we define the quotient monad T E = (T E , ηE , µE) as the monad on C
arising from the composition of the adjunction (H,V, η = s, ε = id) of Lemma 7.1.3
and the Eilenberg-Moore adjunction (G,U, η, ε) of T :

(T , E)-Alg

V

!!
> T -Alg

U

��

H

bb
> C

G

\\ T Eee

We define the natural transformation q : T ⇒ T E as the family of underlying
C-arrows of s for free algebras:

qX = UsGX = Us(TX,µX) : TX → T EX (7.2)

The next result summarizes what we need to know about q and the quotient
monad.

Theorem 7.1.5. Let T E = (T E , ηE , µE) be the quotient monad associated to a monad
T = (T, η, µ) on C with T -equations E . Define the natural transformation q as
in (7.2), so q : T ⇒ T E is defined on an object X as the coequalizer of µX ◦ l]TX and
µX ◦ r]TX :

(TETX, µETX)
l]TX //

r]TX

// (TTX, µTX)
µX // (TX, µX)

qX // (T EX, (µX)E) .

Then

1. the components of q (as well as Tq and Eq) are epimorphisms in the underlying
category C,

2. the unit of the quotient monad is given by ηE = q ◦ η and

3. q is a monad morphism from T to T E .

Proof. The first item follows from Assumption 7.1.2. For the second item, we have
ηE = UsG ◦ η = q ◦ η. The third item is proved below in Corollary 7.1.7.

Next, we show that q is indeed a monad morphism from T to T E . One way of
doing so is to show that q is a coequalizer in the category of monads and monad
morphisms. Kelly studied colimits in categories of monads, and proved their exis-
tence in the context of a certain adjunction [Kel80, Proposition 26.4]; with a bit
of effort one can instantiate this to the adjunction constructed above. For a self-
contained presentation in this section, we do not invoke Kelly’s results but instead
prove directly the part that shows the existence of a monad morphism. This is
instantiated below to the adjunction of the quotient monad.

146 Chapter 7. Presenting distributive laws

Lemma 7.1.6. Let A be any subcategory of T -Alg, and suppose the forgetful functor
U : A → C has a left adjoint F , with unit and counit denoted by η′ and ε′ respectively.
Then

1. F induces a natural transformation κ : TUF ⇒ UF so that κ ◦ Tη′ : T ⇒ UF
is a monad morphism.

2. Precomposing the functor UF -Alg → T -Alg induced by this monad morphism
with the comparison functor A → UF -Alg yields the inclusion A → T -Alg.

The relevant categories and functors are summarized in the diagram below, where
the functors in the right-hand triangle are given by 2 above (hence, this triangle
commutes).

C
F

**⊥ A� _

��

//

U

jj UF -Alg

wwooooooooooo

T -Alg

eeLLLLLLLLLLL

Proof. The functor F sends any C-object X to a T -algebra structure on UFX; we
define κX to be that algebra structure. Naturality of κ is immediate since Ff is
a T -algebra homomorphism for any C-arrow f . To see that κ ◦ Tη′ is a monad
morphism, we have to prove that the outside of the following diagram commutes:

TT
TTη′+3

µ

��

TTUF
Tκ +3

µUF

��

TUF
Tη′UF+3

κ

��

TUFUF

κUF

��
T

Tη′ +3 TUF
κ +3 UF UFUF

µ′ks

Id

η

KS

η′
+3 UF

ηUF

KS ttttttttt

ttttttttt

Here µ′ = Uε′F is the multiplication of the monad that arises from the adjunction
F a U . The top left square commutes by naturality and the middle square since
any component of κ is a T -algebra. For the right-hand square we have

κ = κ ◦ TUε′F ◦ Tη′UF = Uε′F ◦ κUF ◦ Tη′UF = µ′ ◦ κUF ◦ Tη′UF

where the first equality follows from the triangle identity idUF = Uε′F ◦ η′UF
(and functoriality), and the second from the fact that, for any X, ε′FX is a T -
algebra homomorphism from κUFX to κX . The bottom left square commutes by
naturality, and the triangle since κ is an T -algebra.

For item 2 of the statement of the theorem, we first note that the composite
functor under consideration maps any T -algebra (A,α) in A to Uε′(A,α) ◦ κA ◦Tη

′
A.

7.1. Quotients of monads 147

But the following diagram commutes:

TA
Tη′A //

IIIIIIIII

IIIIIIIII TUFA
κA //

TUε′(A,α)

��

UFA

Uε′(A,α)

��
TA α

// A

by a triangle identity and the fact that ε′(A,α) is an algebra morphism. Hence
Uε′(A,α) ◦ κA ◦ Tη

′
A = α, which means that the composite functor under consid-

eration indeed coincides with the inclusion.

Corollary 7.1.7. Item 3 of Theorem 7.1.5 holds: q : T ⇒ T E is a monad morphism.

Proof. By Lemma 7.1.6, we only need to show that q coincides with κ ◦TηE , where
ηE is the unit of the quotient monad. To this end, consider the following diagram:

T
TηE +3

Tη

�%
CCCCCCCC

CCCCCCCC TT E
κ +3 T E

TT µ
+3

Tq

KS

T

q

KS

Commutativity of the triangle holds by Theorem 7.1.5. For the square, notice that
the components of κ are simply the quotient algebras as constructed in the proof
of Lemma 7.1.3, and q is an algebra morphism by construction.

Remark 7.1.8. The monad morphism q : T ⇒ T E induces a functor

T E -Alg→ T -Alg.

By Lemma 7.1.6 (2), the comparison functor (T , E)-Alg→ T E -Alg followed by the
functor T E -Alg→ T -Alg coincides with the inclusion (T , E)-Alg→ T -Alg.

The above construction yields a monad T E given a set of operations and equa-
tions. Intuitively, any monad which is isomorphic to T E is presented by these same
operations and equations; this is captured by the following definition.

Definition 7.1.9. Let Σ be an endofunctor on C, Σ∗ the free monad for Σ, and
T E the quotient monad of Σ∗ with respect to some Σ∗-equations E . A monad K =
(K, θ, ν) is presented by Σ and E if there is a monad isomorphism i : (Σ∗)E ⇒ K.

Example 7.1.10. The idempotent semiring monad is defined by the Set endofunctor
that maps a set X to the set Pω(X∗) of finite languages over X and a function
f : X → Y to Pω(f∗)(L) =

⋃
{f(x1) · · · f(xn) | x1 · · ·xn ∈ L}. The unit ηX : X →

Pω(X∗) and the multiplication µX : Pω(Pω(X∗)∗)→ Pω(X∗) are given by

ηX(x) = {x},
µX(L) =

⋃
L1···Ln∈L{w1 · · ·wn | wi ∈ Li}.

148 Chapter 7. Presenting distributive laws

Consider the functor Σ and equations E for the free monad Σ∗, where

ΣX = X ×X +X ×X + 1 + 1

models two binary operators (to represent addition + and multiplication ·) and two
constants (to represent 0 and 1). The equations E for Σ∗ are given by the idempo-
tent semiring axioms. We obtain a quotient monad (Σ∗)E , and by Theorem 7.1.5 a
monad morphism:

q : Σ∗ ⇒ (Σ∗)E .

Since we have chosen E to be the idempotent semiring axioms, we have a monad
isomorphism (Σ∗)E ∼= Pω(Id∗) (using these equations, every term is equivalent
to a sum of products of variables). Thus, the monad Pω(Id∗) is presented by the
(semiring) signature Σ and the axioms for idempotent semirings.

7.2 Quotients of distributive laws

In the previous section, we saw how equations give rise to quotients of algebras,
and we gave a construction of the resulting quotient monad. Next, we investigate
conditions under which distributive laws and equations give rise to quotients of
distributive laws.

7.2.1 Distributive laws over plain behaviour functors

Let λ : TB ⇒ BT be a distributive law of a monad T = (T, η, µ) over a (plain)
behaviour functor B (Section 3.5). Given equations E = (E, l, r) for T we provide
a condition on λ and E that ensures that we get a distributive law λE : T EB ⇒ BT E

of the quotient monad over B. We use the notion of morphisms of distributive laws
from [PW02, Wat02].

Definition 7.2.1. Let T = (T, η, µ) and K = (K, θ, ν) be monads, and let λ : TB ⇒
BT and κ : KB ⇒ BK be distributive laws of T and K over B. A natural trans-
formation τ : T ⇒ K is a morphism of distributive laws from λ to κ if τ is a monad
morphism and the following square commutes:

TB

λ

��

τB +3 KB

κ

��
BT

Bτ
+3 BK

(7.3)

There are generalizations of the above definition that allow natural transforma-
tions between behaviour functors [Wat02]. For our purposes, we do not need to
change the behaviour type.

7.2. Quotients of distributive laws 149

Definition 7.2.2. We say that λ : TB ⇒ BT preserves (equations in) E if for every
object X in C:

EBX
lBX //
rBX
// TBX

λX // BTX
BqX // BT EX (7.4)

commutes.

In Set, preservation of equations can be conveniently formulated in terms of
relation lifting (Section 3.2.1).

Lemma 7.2.3. Suppose B : Set → Set preserves weak pullbacks. Denote by ≡X the
congruence ker(qX) on TX generated by the equations. Then λ preserves E if and only
if for every set X and every b ∈ EBX:

(λX(lBX(b)), λX(rBX(b))) ∈ Rel(B)(≡X) . (7.5)

Proof. By Lemma 3.2.4:

• Rel(B) preserves diagonal relations, i.e., Rel(B)(∆X) = ∆BX , and

• Rel(B) preserves inverse images, since B preserves weak pullbacks.

Hence Rel(B) preserves kernel relations (cf. [Jac12, Lemma 3.2.5(i)]):

Rel(B)(≡X) = Rel(B)(ker(qX)) definition ≡X
= Rel(B)((qX × qX)−1(∆X))
= (BqX ×BqX)−1(Rel(B)(∆X)) Rel(B) pres. inverse images
= (BqX ×BqX)−1(∆BX) Rel(B) pres. diagonals
= ker(BqX)

Thus, the condition from the statement of the lemma is satisfied if and only if for
every X and every b ∈ EBX we have

(λX(lBX(b)), λX(rBX(b))) ∈ ker(BqX)

which coincides with preservation of equations.

We now come to the main result of this chapter. It shows how to obtain a
distributive law for the quotient monad under the assumption of preservation of
equations. Preservation of equations can be proved by explicit calculations, as
shown in several examples below.

Theorem 7.2.4. If λ : TB ⇒ BT preserves equations E then there is a (unique)
distributive law λE : T EB ⇒ BT E such that q : T ⇒ T E is a morphism of distributive
laws from λ to λE .

150 Chapter 7. Presenting distributive laws

Proof. Suppose λ preserves equations E . We first prove that the top rows of the
following diagram commute:

TETBX
l]TBX //

r]TBX

// TTBX
µBX // TBX

λX // BTX
BqX // BT EX

ETBX

ηETBX

OO

lTBX

MM

rTBX

MM
(7.6)

In order to do so, we prove that

1. BqX ◦ λX is an algebra morphism from (TBX,µBX), and

2. the bottom two paths, i.e., from ETBX to BT E , commute.

Commutativity of the top rows then follows from the fact that homomorphic ex-
tensions are unique.

For the first item, consider the following diagram:

TTBX

µBX

��

TλX // TBTX

λTX

��

TBqX // TBT EX

λTEX
��

BTTX

BµX

��

BTqX // BTT EX

B(µX)E
��

TBX
λX

// BTX
BqX

// BT EX

The rectangle (on the left) is the multiplication law for λ, which holds since λ is a
distributive law of T over B (Section 3.5.1). The upper right square commutes by
naturality, the lower by the fact that qX is an algebra morphism.

For the second item, we need to prove that the top two rows in the following
diagram commute:

ETBX
lTBX //
rTBX

//

EλX

��

(nat. l, r)

TTBX
µBX //

TλX

��

(mult. λ)

TBX
λX // BTX

BqX //

(q monad morphism)

BT EX

EBTX
lBTX //
rBTX

// TBTX
λTX

// BTTX

BµX

99tttttttttttttt

BqTX

// BT ETX
BTEqX

// BT ET EX

BµEX

OO

The two squares on the left (for l, r respectively) commute by naturality of l and r.
The two other shapes commute by the multiplication law of λ and the fact that q is
a monad morphism (Corollary 7.1.7). The crucial point is that the two paths from
EBTX to BT ETX commute by the assumption that λ preserves E (instantiated to
the object TX). It follows that the top rows commute, as desired.

7.2. Quotients of distributive laws 151

Thus, we have shown that (7.6) commutes. By the universal property of the
coequalizer qBX we obtain λEX :

TETBX
l]TBX //

r]TBX

// TTBX
µBX // TBX

qBX //

λX

��

T EBX

λEX
���
�
�

BTX
BqX // BT EX

(7.7)

Naturality of λE follows from (7.7), naturality of λ and q, and the fact that q is
componentwise epic in the underlying category C (Theorem 7.1.5). Due to the
commutativity of the square in (7.7), q is a morphism of distributive laws from λ
to λE once we show that λE is, in fact, a distributive law of monad over functor
(Section 3.5.1).

The unit law for λE holds due to the unit law for λ, (7.7) and the fact that
ηE = q ◦ η (Theorem 7.1.5):

BX

ηEBX

��ηBX // TBX
qBX //

λX

��

T EBX

λEX
��

(7.7)

BX
BηX

//

BηEX

GGBTX
BqX

// BT EX

(7.8)

Multiplication law for λE :

TBX
λX //

qBX

��

(mult. λ)

BTX

BqX

��

TTBX

µBX

OO

qTBX

��

TλX //

(nat. q)

TBTX
λTX //

qBTX

��

(7.7)

BTTX

BµX

OO

BqTX

��
T ETBX

TEqBX

��

TEλX //

(7.7)

T EBTX
λETX //

TEBqX

��

(nat. λE)

BT ETX

BTEqX

��
T ET EBX

TEλEX //

µEBX

��

T EBT EX
λE
TEX // BT ET EX

BµEX

��
T EBX

λEX // BT EX

(7.9)

152 Chapter 7. Presenting distributive laws

The small upper-left square commutes by naturality of q. The small lower-left
square commutes by applying T E to (7.7). The outer crescents commute since q is
a monad morphism, and the outermost part does due to (7.7). Finally, we use that
by naturality of q, T EqBX ◦ qTBX = qTEBX ◦ TqBX , which by Theorem 7.1.5 is an
epi, and hence can be right-cancelled to yield commutativity of the lower rectangle
as desired.

Remark 7.2.5. Every distributive law uniquely corresponds to a functor lifting on
T -algebras. The distributive law λE in Theorem 7.2.4 exists if and only if the
lifting restricts to T E -algebras. A similar statement for the case when B is a monad
is made in [MM07, Corollary 3.4.2].

As a corollary we obtain the analogue of Theorem 7.2.4 for monads presented
by operations and equations.

Corollary 7.2.6. Suppose K = (K, θ, ν) is a monad that is presented by operations
Σ and equations E with a monad isomorphism i : T E ⇒ K, and suppose we have a
distributive law λ : Σ∗B ⇒ BΣ∗ of Σ∗ over B that preserves E . Then there exists
a unique distributive law κ : KB ⇒ BK of K over B such that i ◦ q : λ ⇒ κ is a
morphism of distributive laws.

Proof. By Theorem 7.2.4 we obtain a distributive law λE of T E over B. The dis-
tributive law κ : KB ⇒ BK is defined as κ = Bi ◦ λE ◦ i−1. The proof proceeds by
checking that κ indeed satisfies the defining axioms of a distributive law, which is
an easy but tedious exercise.

Theorem 7.2.4 states that if λ preserves the equations E , then we can present
λE as “λ modulo equations”. We illustrate this with an example.

Example 7.2.7 (Stream calculus). Behavioural differential equations are used to
define streams and stream operations (Section 3.1.1). We define the following
system of behavioural differential equations:

(σ × τ)0 = σ0 · τ0 (σ × τ)′ = (σ′ × [τ0]) + ((σ′ × (X× τ ′)) + ([σ0]× τ ′))
X0 = 0 X′ = [1]

where the sum + and the constants [r] = (r, 0, 0, . . .) for all r ∈ R, are as defined in
Section 3.1.1. The operation × is the convolution product, defined differently here
than in Section 3.1.1; we explain this choice at the end of the example.

Since we are defining two binary operations (+ and ×), one constant stream X

and R many streams [r], the signature under consideration is ΣX = X ×X +X ×
X + 1 +R. The differential equations can be modelled as a natural transformation
ρ : Σ(R × Id) ⇒ R × Σ∗, where Σ∗ is the free monad for Σ. On a component X, ρ
is given by:

ρ
[r]
X = (r, [0])

ρXX = (0, [1])

ρ+
X((a, x), (b, y)) = (a+ b, x+ y)

ρ×X((a, x), (b, y)) = (a · b, (x× [b]) + ((x× (X× y)) + ([a]× y)))

7.2. Quotients of distributive laws 153

This differs from Example 3.5.5, where we considered GSOS specifications, which
are of a slightly different form, involving the copointed functor (R× Id)× Id on the
left-hand side. Similar to what is described for GSOS specifications in Section 3.5.2,
the above natural transformation ρ induces a distributive law ρ† : Σ∗(R × Id) ⇒
(R× Id)Σ∗.

Let E be given by the following axioms where v, u, w are variables and a, b ∈ R
(see Example 7.1.1 for an explanation of how this corresponds to a functor with
two natural transformations):

(v + u) + w = v + (u+ w) [0] + v = v v + u = u+ v
(v × u)× w = v × (u× w) [1]× v = v v × u = u× v
v × (u+ w) = (v × u) + (v × w) [0]× v = [0]
[a+ b] = [a] + [b] [a · b] = [a]× [b]

E consists of the commutative semiring axioms together with axioms stating the
inclusion of the underlying semiring of the reals. We would like to apply Theo-
rem 7.2.4 to obtain a distributive law for the quotient monad arising from Σ∗ and
E . To this end, we show that ρ† preserves E . Let (a, x), (b, y), (c, z) ∈ R×X for some
set X. First note that (r1, t1) Rel(R× Id)(≡X) (r2, t2) iff r1 = r2 and t1 ≡X t2. It is
straightforward to check preservation of the axioms that only concern addition, as
well as of [1]× v = v, [0]× v = [0] and v×u = u× v. We show that [a · b] = [a]× [b]
is preserved:

ρ†X([a]× [b]) = (a · b, [0]× [b] + [0]× X× [0] + [a]× [0])
Rel(R× Id)(≡X) (a · b, [0])

= ρ†X([a · b])

We check that ρ† preserves the distribution axiom:

ρ†X((a, x)× ((b, y) + (c, z)))
= (a · (b+ c), (x× [b+ c]) + (x×X × (y + z)) + [a]× (y + z))

Rel(R× Id)(≡X) (a · (b+ c), (x× [b+ c]) + (x×X × y) + (x×X × z)+
([a]× y) + ([a]× z))

Rel(R× Id)(≡X) ((a · c) + (b · c), (x× [b]) + (x×X × y) + ([a]× y)+
(x× [c]) + (x×X × z) + ([a]× z))

= ρ†X(((a, x)× (b, y)) + ((a, x)× (c, z)))

Note that we used [a + b] = [a] + [b]. Similarly, preservation of ×-associativity can
be verified, and it uses the axiom [a · b] = [a] × [b]. We have thus shown that ρ†

preserves E , and by Theorem 7.2.4 we obtain a distributive law of the quotient
monad over R× Id.

The derivative of the convolution product is usually given differently than we
defined it above. However, with the usual definition (Section 3.1.1), we did not
manage to show that the commutativity of × is preserved although all other ax-
ioms remain preserved. However, the convolution product (interpreted in the final
coalgebra) is commutative. This suggests that, even if a given set of equations

154 Chapter 7. Presenting distributive laws

holds in (the algebra induced by the distributive law on) the final coalgebra, these
equations are not necessarily preserved (cf. Example 7.2.9 below).

In the above example, we did not have a specific monad in mind; we simply
considered a free monad and a set of equations. In Example 7.2.11 below, we give
an example for the idempotent semiring monad.

Remark 7.2.8. The concrete proof method for preservation of equations bears a
close resemblance to bisimulation up to congruence as presented in Chapters 2,4
and 5, since one must show that for every pair in the (image of the) equations, its
derivatives are related by the least congruence ≡X instead of just the equivalence
relation induced by the equations.

Example 7.2.9. In this example we show that it is not always possible to show
that a given λ preserves a given equation that holds in the final coalgebra. Again,
we consider stream systems, i.e., coalgebras for the functor BX = R × X. We
define the constant stream of zeros by three different constants n1, n2 and n3 by
the following behavioural differential equations:

n1(0) = 0 n′1 = n1

n2(0) = 0 n′2 = n3

n3(0) = 0 n′3 = n3

The corresponding signature functor is ΣX = 1+1+1, and the above specification
gives rise to a distributive law λ : Σ∗B ⇒ BΣ∗. Now consider the equation n1 = n2;
this clearly holds when interpreted in the final coalgebra. However, this equation
is not preserved by λ. To see this, notice that λ(n1) = (0, n1) and λ(n2) = (0, n3),
but n1 6≡X n3, so λ(n1) and λ(n2) are not related by Rel(B)(≡X).

7.2.2 Distributive laws over copointed functors

We now show that the main result of this chapter also holds for distributive laws
over copointed functors. This extends our method to deal with operations specified
in the abstract GSOS format (Section 3.5.2).

Proposition 7.2.10. Theorem 7.2.4 and Corollary 7.2.6 hold as well for any dis-
tributive law of a monad over a copointed functor.

Proof. Let (B, ε) be a copointed functor and λ : TB ⇒ BT a distributive law of T
over (B, ε). Suppose λ preserves equations E . Then by Theorem 7.2.4 there is a
distributive law λE of T E over B such that q : T ⇒ T E is a morphism of distributive
laws. In order to show that λE is a distributive law of T E over (B, ε), we only need
to prove that λE satisfies the additional axiom, i.e., that the right-hand crescent in

7.2. Quotients of distributive laws 155

the following diagram commutes:

TBX
qBX //

λX

��
TεX

T EBX

λEX
��

TEεX

��

BTX
BqX //

εTX

��

BT EX

εTEX

��
TX qX

// T EX

The outermost part commutes by naturality of q, the upper square commutes since
q is a morphism of distributive laws, the lower square commutes commute by nat-
urality of ε, and the left crescent commutes by the fact that λ is a distributive law
of T over (B, ε). Consequently we have εTEX ◦ λEX ◦ qBX = T EεX ◦ qBX , and since
qBX is an epi (Theorem 7.1.5) we obtain εTEX ◦ λEX = T EεX as desired.

Example 7.2.11 (Context-free languages). A context free grammar (in Greibach
normal form) consists of a finite set A of terminal symbols, a (finite) set X of non-
terminal symbols, and a map 〈o, t〉 : X → 2 × Pω(X∗)A, i.e., it is a coalgebra for
the behaviour functor B = 2× IdA composed with the idempotent semiring monad
Pω(Id∗) from Example 7.1.10. Intuitively, o(x) = 1 means that the variable x can
generate the empty word, whereas w ∈ t(x)(a) if and only if x can generate aw
(see [WBR13, Win14]).

It is a rather difficult task to describe concretely a distributive law of the monad
Pω(Id∗) over B×Id defining the sum + and sequential composition · of context-free
grammars (and it is impossible to use B rather than B× Id, see [Win14]). Instead,
we use Example 7.1.10, which presents the monad Pω(Id∗) by the operations and
axioms of idempotent semirings. We proceed by defining a distributive law of the
free monad Σ∗ generated by the signature functor ΣX = 1+1+(X×X)+(X×X)
(to be interpreted as the constants 0, 1 and the binary operators +, ·) over the
copointed functor (B×Id, π2), and show that it preserves the semiring axioms. This
distributive law arises from the abstract GSOS specification ρ : Σ(B × Id) ⇒ BΣ∗

whose components are given by:

ρ0
X = (0, a 7→ 0)

ρ1
X = (1, a 7→ 0)

ρ+
X((x, o, f), (y, p, g)) = (max{o, p}, a 7→ f(a) + g(a))

ρ·X((x, o, f), (y, p, g)) =

(
min{o, p}, a 7→

{
f(a) · y if p = 0

f(a) · y + g(a) if p = 1

)

We proceed to show that the induced distributive law ρ† preserves the defining
equations of idempotent semirings. We only treat the case of distributivity, i.e.,
u · (v + w) = u · v + u · w. To this end, let X be arbitrary and suppose that

156 Chapter 7. Presenting distributive laws

(o, d, x), (p, e, y), (q, f, z) ∈ BX × X. Notice that either o = 0 or o = 1; we treat
both cases separately:

ρ†((0, d, x) · ((p, e, y) + (q, f, z)))
= (0, a 7→ d(a) · (y + z), x · (y + z))

Rel(B)(≡X) (0, a 7→ d(a) · y + d(a) · z, x · y + x · z)
= ρ†((0, d, x) · (p, e, y) + (0, d, x) · (q, f, z))

ρ†((1, d, x) · ((p, e, y) + (q, f, z)))
= (p+ q, a 7→ d(a) · (y + z) + (e(a) + f(a)), x · (y + z))

Rel(B)(≡X) (p+ q, a 7→ (d(a) · y + d(a) · z) + (e(a) + f(a)), x · y + x · z)
Rel(B)(≡X) (p+ q, a 7→ (d(a) · y + e(a)) + (d(a) · z + f(a)), x · y + x · z)

= ρ†((1, d, x) · (p, e, y) + (1, d, x) · (q, f, z)) .

In a similar way, one can show that ρ† preserves the other idempotent semiring
equations. Thus, from Proposition 7.2.10 and Corollary 7.2.6 we obtain a distribu-
tive law κ of Pω(Id∗) over B×Id such that i◦q : ρ† ⇒ κ is a morphism of distributive
laws, i.e., κ is presented by ρ† (which is in turn determined by ρ) and the equations
of idempotent semirings.

7.2.3 Distributive laws over comonads

A further type of distributive law, which generalizes all of the above, is that of a
distributive law of a monad over a comonad. These arise from GSOS laws as well
as from coGSOS laws, which allow to model operational rules which involve look-
ahead in the premises. We refer to [Kli11] for technical details and an example of
a coGSOS format on streams. In this subsection, we prove for future reference that
when constructing the quotient distributive law as above for a distributive law over
a comonad, the axioms are preserved, i.e., the quotient is again a distributive law
over the comonad.

Proposition 7.2.12. Theorem 7.2.4 and Corollary 7.2.6 hold as well for any dis-
tributive law of a monad over a comonad.

Proof. Let (D, ε, δ) be a comonad and λ : TD ⇒ DT a distributive law of the monad
(T, η, µ) over the comonad (D, ε, δ). Suppose λ preserves equations E . By Proposi-
tion 7.2.10 there is a distributive law λE of T E over the copointed functor (D, ε).
To show that λE is a distributive law over the comonad (D, ε, δ), we need to check

7.3. Quotients of bialgebras 157

that the corresponding axiom holds.

TD

Tδ

��

qD

##

λ // DT

δT

��

Dq

{{

TDD
λD //

qDD

��

DTD
Dλ //

DqD

��

DDT

DDq

��
T EDD

λED // DT ED
DλE // DDT E

T ED

TEδ

OO

λE // DT E

δTE

OO

The outermost part and the right-hand square both commute by the fact that q is a
morphism of distributive laws. The outer crescents commute by naturality of q and
δ. The upper rectangle commutes by the assumption that λ is a distributive law over
the comonad. Checking that the lower rectangle commutes, which is what we need
to prove, is now an easy diagram chase, using that qD is epic (Theorem 7.1.5).

7.3 Quotients of bialgebras

We show how initial and final λ-bialgebras for a distributive law relate to initial
and final bialgebras for a quotiented distributive law as constructed in the previous
section. We study this in the general setting of morphisms of distributive laws, and
to this end we assume:

• monads T = (T, η, µ) and K = (K, θ, ν);

• distributive laws λ : TB ⇒ BT and κ : KB ⇒ BK (both of monad over
functor);

• a morphism of distributive laws τ : T ⇒ K from λ to κ.

Morphisms of distributive laws are defined to be monad morphisms, and hence
respect the algebraic structure. The next proposition shows that, as one might
expect, they also respect the coalgebraic structure, and hence morphisms of dis-
tributive laws induce morphisms between bialgebras.

Proposition 7.3.1. Let T̂ : TB-coalg → B-coalg and K̂ : KT -coalg → K-coalg be
liftings induced by λ and κ as in Equation (3.14) of Section 3.5. For all δ : X → BTX,
τX is a B-coalgebra morphism from T̂ (X, δ) to K̂(X,BτX ◦ δ).

158 Chapter 7. Presenting distributive laws

Proof. The following diagram commutes:

TX

Tδ

��

τX //

(nat. τ)

KX

Kδ

��
TBTX

λTX

��

τBTX //

(morph. of distr. laws)

KBTX

κTX

��

KBτX //

(nat. κ)

KBKX

κKX

��
BTTX

BµX

��

BτTX //

(τ monad morphism)

BKTX
BKτX // BKKX

BνX

��
BTX

BτX

// BKX

Commutativity of the outside is the desired result.

If τ arises from a set of preserved equations E as in Section 7.2 (with κ = λE),
then Proposition 7.3.1 states that, for any coalgebra δ : X → BTX, the coalge-
bra K̂(X,BτX ◦ δ) is a quotient of the coalgebra T̂ (X, δ), and in particular, the
congruence ≡X is included in behavioural equivalence on T̂ (X, δ).

Example 7.3.2. Recall from Example 7.2.11 that the abstract GSOS specification
for context-free grammars induces a morphism i ◦ q : Σ∗ ⇒ Pω(X∗) of distributive
laws, where Σ∗ is the free monad for the signature ΣX = X ×X +X ×X + 1 + 1
representing a binary choice +, a binary composition ·, and constants 0 and 1.
These distributive laws induce liftings Σ̂∗ and P̂ω(Id∗).

By Proposition 7.3.1 we have the following commutative diagram for any coal-
gebra of the form δ : X → 2× (Σ∗X)A:

X
ηX //

δ

##GGGGGGGGG Σ∗X
(i◦q)X //

Σ̂∗(δ)

��

Pω(X∗) //

P̂ω(Id∗)(BiX◦BqX◦δ)
��

P(A∗)

ζ

��
2× (Σ∗X)A

id×((i◦q)X)A
// 2× Pω(X∗)A // 2× P(A∗)A

(7.10)

where ζ is the final coalgebra for BX = 2×XA.
This gives the expected correspondence between two of the three different coal-

gebraic approaches to context-free languages introduced in [WBR13] (the third
approach is about fixed-point expressions and is outside the scope of this chapter).
These two approaches are:

1. A context-free grammar is defined as a coalgebra X → 2 × (Pω(X∗))A and
inductively extended to a coalgebra Pω(X∗) → 2× (Pω(X∗))A, and the lan-
guage semantics arises by finality. This extension coincides with our lifting
P̂ω(Id∗).

7.4. Discussion and related work 159

2. A context-free grammar is defined more syntactically (viewed as a system
of behavioural differential equations in [WBR13]) as a coalgebra X → 2 ×
(Σ∗X)A, which is inductively extended to a coalgebra Σ∗X → 2× (Σ∗X)A to
obtain its language semantics. This extension coincides with our lifting Σ̂∗.

The situation in diagram (7.10) yields the correspondence between these two app-
proaches.

Similarly, if B has a final coalgebra (Z, ζ), then the algebra on ζ induced by λ
(Lemma 3.5.1) factors through the algebra on ζ induced by κ.

Proposition 7.3.3. Let α : TZ → Z and α′ : KZ → Z be the algebras induced by λ
and κ respectively on the final B-coalgebra (Z, ζ). Then α = α′ ◦ τZ .

Proof. Consider the following diagram:

TZ
τZ //

Tζ

��

KZ
α′ //

Kζ

��

Z

ζ

��

TZ

Tζ

��

αoo

TBZ
τBZ //

λZ

��

KBZ

κZ

��

TBZ

λZ

��
BTZ

BτZ

// BKZ
Bκ
// BZ BTZ

Bα
oo

The upper left square commutes by naturality of τ , whereas the lower left square
commutes since τ is a morphism of distributive laws. The two rectangles commute
by definition of α and α′. Thus α′ ◦ τZ and α are both coalgebra homomorphisms
from (TZ, λZ ◦ Tζ) to (Z, ζ) and consequently α′ ◦ τZ = α by finality.

Example 7.3.4. Continuing Example 7.3.2, it follows from Proposition 7.3.3 that
the algebra α : Σ∗(P(A∗)) → P(A∗) induced by the distributive law for the free
monad for Σ can be decomposed as i ◦ q ◦ α′, where α′ is the algebra on P(A∗)
induced by the distributive law for Pω(Id∗). It can be shown by induction that α is
the algebra on languages given by union and concatenation product.

Now α′ : Pω(P(A∗)∗)→ P(A∗) can be given by selecting a representative term
and applying α, and it follows that

α′(L) =
⋃

L1···Ln∈L
{w1 · · ·wn | wi ∈ Li} .

We thus retrieved this algebra α′ induced by the distributive law for Pω(Id∗) from
the algebra α : Σ∗(P(A∗))→ P(A∗) on terms.

7.4 Discussion and related work

We presented a preservation condition that is sufficient for the existence of a dis-
tributive law λE for a monad with equations, given a distributive law λ for the

160 Chapter 7. Presenting distributive laws

underlying monad. This condition consists of checking that the equations are pre-
served by λ. We demonstrated the method by constructing distributive laws for
stream calculus over commutative semirings, and for context-free grammars which
use the monad of idempotent semirings. The reader is invited to compare the com-
plexity of checking that λ preserves the equations with describing and verifying the
distributive law requirements directly.

Morphisms of distributive laws are used in [Wat02] as a general approach for
studying translations between operational semantics. In the current chapter, we
investigated in detail the case of quotients of distributive laws. Distributive laws
for monad quotients and equations are also studied in [LPW04, MM07]. The set-
ting and motivation of [MM07] is different as they study distributive laws of one
monad over another with the aim to compose these monads. We study distributive
laws of a monad over a plain functor, a copointed functor or a comonad. The ap-
proach in [LPW04] (in particular Theorem 31) differs from ours in that the desired
distributive law is contingent on two given distributive laws and the existence of
the coequalizer (in the category of monads) which encodes equations. We have
given a more direct analysis which includes a concrete proof principle.

We have focused on adding equations which already hold in the final bialgebra,
whereas in Chapter 6 we introduced an approach for adding equations to a dis-
tributive law via structural congruence. The results of these chapters can possibly
be combined to give a more general account of equations and structural congru-
ences for different monads.

In the case of GSOS on labelled transition systems, proving equations to hold
at the level of a specification was considered in [ACI12], based on the notion of
rule-matching bisimulation, a refinement of De Simone’s FH-bisimulation. Rule-
matching bisimulations are based on the syntactic notion of ruloids, while our
technique is based on preservation of equations at the level of distributive laws.
It is currently not clear what the precise relation between these two approaches is;
one difference is that preserving equations naturally incorporates reasoning up to
congruence. Further, we do not know how, and to what extent, the decidability
result of [ACI12], which is based on identifying a finite set of ruloids, is reflected
at the more abstract level of the current chapter.

Bibliography

[AC14] Davide Ancona and Andrea Corradi. Sound and complete subtyping
between coinductive types for object-oriented languages. In Richard
Jones, editor, ECOOP 2014 - Object-Oriented Programming - 28th Eu-
ropean Conference, Proceedings, volume 8586 of Lecture Notes in Com-
puter Science, pages 282–307. Springer, 2014. (Cited on page 9.)

[ACI12] Luca Aceto, Matteo Cimini, and Anna Ingólfsdóttir. Proving the valid-
ity of equations in GSOS languages using rule-matching bisimilarity.
Mathematical Structures in Computer Science, 22(2):291–331, 2012.
(Cited on page 160.)

[Acz88] Peter Aczel. Non-well-founded Sets. Center for the Study of Lan-
guage and Information Publication Lecture Notes. Cambridge Univer-
sity Press, 1988. (Cited on page 11.)

[AFV01] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational
semantics. In Handbook of Process Algebra, pages 197–292. Elsevier
Science, 2001. (Cited on pages 9 and 14.)

[AGJJ12] Robert Atkey, Neil Ghani, Bart Jacobs, and Patricia Johann. Fibra-
tional induction meets effects. In Lars Birkedal, editor, Foundations
of Software Science and Computational Structures - 15th International
Conference, FoSSaCS 2012, proceedings, volume 7213 of Lecture Notes
in Computer Science, pages 42–57. Springer, 2012. (Cited on page 52.)

[AKV00] Jǐrí Adámek, Václav Koubek, and Jǐrí Velebil. A duality between in-
finitary varieties and algebraic theories. Commentationes Mathemati-
cae Universitatis Carolinae, 41(3):529–542, 2000. (Cited on pages 86
and 143.)

[AM89] Peter Aczel and Nax Mendler. A final coalgebra theorem. In Category
Theory and Computer Science, 1989, proceedings, volume 389 of LNCS,
pages 357–365. Springer, 1989. (Cited on pages 11, 46, 79, and 84.)

[APTS13] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.
Copatterns: programming infinite structures by observations. In Gia-
cobazzi and Cousot [GC13], pages 27–38. (Cited on page 9.)

161

162 Bibliography

[Awo10] Steve Awodey. Category Theory. Oxford Logic Guides. OUP Oxford,
2010. (Cited on page 41.)

[Bar03] Falk Bartels. Generalised coinduction. Mathematical Structures in
Computer Science, 13(2):321–348, 2003. (Cited on page 93.)

[Bar04] Falk Bartels. On generalised coinduction and probabilistic specification
formats. PhD thesis, CWI, Amsterdam, April 2004. (Cited on pages 14,
15, 16, 41, 60, 62, 64, 65, 82, 117, and 121.)

[BBB+12] Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rutten, and
Alexandra Silva. A coalgebraic perspective on linear weighted au-
tomata. Information and Computation, 211:77–105, 2012. (Cited on
pages 44, 46, 48, 63, 68, 84, and 87.)

[BH98] Michael Brandt and Fritz Henglein. Coinductive axiomatization of
recursive type equality and subtyping. Fundamenta Informaticae,
33(4):309–338, 1998. (Cited on page 9.)

[BHKR13] Marcello Bonsangue, Helle Hvid Hansen, Alexander Kurz, and Jurri-
aan Rot. Presenting distributive laws. In Reiko Heckel and Stefan
Milius, editors, CALCO, volume 8089 of Lecture Notes in Computer Sci-
ence, pages 95–109. Springer, 2013. (Cited on page 18.)

[BHKR15] Marcello Bonsangue, Helle Hvid Hansen, Alexander Kurz, and Jurri-
aan Rot. Presenting distributive laws. Logical Methods in Computer
Science, 11(3), 2015. (Cited on page 18.)

[BIM95] Bard Bloom, Sorin Istrail, and Albert Meyer. Bisimulation can’t be
traced. Journal of the ACM, 42(1):232–268, 1995. (Cited on pages 14
and 64.)

[BK01] Peter Buchholz and Peter Kemper. Quantifying the dynamic behavior
of process algebras. In Luca de Alfaro and Stephen Gilmore, editors,
PAPM-PROBMIV, volume 2165 of Lecture Notes in Computer Science,
pages 184–199. Springer, 2001. (Cited on pages 87 and 132.)

[BM02] Maria Grazia Buscemi and Ugo Montanari. A first order coalgebraic
model of pi-calculus early observational equivalence. In Lubos Brim,
Petr Jancar, Mojmír Kretínský, and Antonín Kucera, editors, CONCUR
2002 - Concurrency Theory, 13th International Conference, proceedings,
volume 2421 of Lecture Notes in Computer Science, pages 449–465.
Springer, 2002. (Cited on page 139.)

[BP12] Thomas Braibant and Damien Pous. Deciding kleene algebras in coq.
Logical Methods in Computer Science, 8(1), 2012. (Cited on page 38.)

[BP13] Filippo Bonchi and Damien Pous. Checking NFA equivalence with
bisimulations up to congruence. In Giacobazzi and Cousot [GC13],
pages 457–468. (Cited on pages 9, 13, 38, 70, and 73.)

163

[BP15] Filippo Bonchi and Damien Pous. Hacking nondeterminism with in-
duction and coinduction. Communications of the ACM, 58(2):87–95,
2015. (Cited on page 13.)

[BPPR14] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot.
Coinduction up-to in a fibrational setting. In Thomas Henzinger and
Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth An-
nual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-
LICS 2014, proceedings, page 20. ACM, 2014. (Cited on pages 17, 18,
and 117.)

[BPT15] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel.
Witnessing (co)datatypes. In Jan Vitek, editor, Programming Lan-
guages and Systems - 24th European Symposium on Programming,
ESOP 2015, Proceedings, volume 9032 of Lecture Notes in Computer
Science, pages 359–382. Springer, 2015. (Cited on page 9.)

[Brz64] Janusz Brzozowski. Derivatives of regular expressions. Journal of the
ACM, 11(4):481–494, 1964. (Cited on pages 21, 22, and 30.)

[BW05] Michael Barr and Charles Wells. Toposes, theories, and triples.
Reprints in Theory and Applications of Categories, No. 12, 2005.
Available at http://www.tac.mta.ca/tac/reprints/articles/12/
tr12abs.html. (Cited on pages 41, 85, and 143.)

[CHM02] Andrea Corradini, Reiko Heckel, and Ugo Montanari. Compositional
SOS and beyond: a coalgebraic view of open systems. Theoretical
Computer Science, 280(1-2):163–192, 2002. (Cited on page 139.)

[Con71] John Conway. Regular Algebra and Finite Machines. Chapman and
Hall, 1971. (Cited on pages 21 and 22.)

[CS11] Thierry Coquand and Vincent Siles. A decision procedure for regular
expression equivalence in type theory. In Jean-Pierre Jouannaud and
Zhong Shao, editors, Certified Programs and Proofs - First International
Conference, CPP 2011, proceedings, volume 7086 of Lecture Notes in
Computer Science, pages 119–134. Springer, 2011. (Cited on pages 19
and 38.)

[DK09] Manfred Droste and Werner Kuich. Semirings and formal power se-
ries. In Handbook of Weighted Automata, pages 3–28. Springer, 2009.
(Cited on page 122.)

[EHB13] Jörg Endrullis, Dimitri Hendriks, and Martin Bodin. Circular coinduc-
tion in Coq using bisimulation-up-to techniques. In Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie, editors, Interactive
Theorem Proving - 4th International Conference, ITP 2013, proceedings,

http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html
http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html

164 Bibliography

volume 7998 of Lecture Notes in Computer Science, pages 354–369.
Springer, 2013. (Cited on pages 13 and 38.)

[FS10] Marcelo Fiore and Sam Staton. Positive structural operational seman-
tics and monotone distributive laws. In Coalgebraic Methods in Com-
puter Science - 10th International Workshop, CMCS 2012, Short Contri-
butions, page 8, 2010. (Cited on pages 116 and 123.)

[FS12] Simon Foster and Georg Struth. Automated analysis of regular al-
gebra. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors,
Automated Reasoning - 6th International Joint Conference, IJCAR 2012,
proceedings, volume 7364 of Lecture Notes in Computer Science, pages
271–285. Springer, 2012. (Cited on page 25.)

[GC13] Roberto Giacobazzi and Radhia Cousot, editors. The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2013, proceedings. ACM, 2013. (Cited on pages 161,
162, and 165.)

[GJF13] Neil Ghani, Patricia Johann, and Clément Fumex. Indexed induction
and coinduction, fibrationally. Logical Methods in Computer Science,
9(3), 2013. (Cited on page 52.)

[GR62] Seymour Ginsburg and H. Gordon Rice. Two families of languages
related to ALGOL. Journal of the ACM, 9(3):350–371, 1962. (Cited
on page 26.)

[Gra05] Clemens Grabmayer. Using proofs by coinduction to find "traditional"
proofs. In José Fiadeiro, Neil Harman, Markus Roggenbach, and Jan
Rutten, editors, Algebra and Coalgebra in Computer Science: First Inter-
national Conference, CALCO 2005, proceedings, volume 3629 of Lecture
Notes in Computer Science, pages 175–193. Springer, 2005. (Cited on
page 38.)

[GS00] H. Peter Gumm and Tobias Schröder. Coalgebraic structure from weak
limit preserving functors. Electronic Notes Theoretical Computer Sci-
ence, 33:111–131, 2000. (Cited on page 80.)

[GS01] H. Peter Gumm and Tobias Schröder. Monoid-labeled transition sys-
tems. Electronic Notes Theoretical Computer Science, 44(1):185–204,
2001. (Cited on pages 48, 68, and 84.)

[HCKJ13] Ichiro Hasuo, Kenta Cho, Toshiki Kataoka, and Bart Jacobs. Coin-
ductive predicates and final sequences in a fibration. Electronic Notes
Theoretical Computer Science, 298:197–214, 2013. (Cited on pages 12,
41, 51, 52, and 56.)

165

[HJ97] Ulrich Hensel and Bart Jacobs. Proof principles for datatypes with
iterated recursion. In Eugenio Moggi and Giuseppe Rosolini, editors,
Category Theory and Computer Science, 7th International Conference,
CTCS 1997, Proceedings, volume 1290 of Lecture Notes in Computer
Science, pages 220–241. Springer, 1997. (Cited on page 9.)

[HJ98] Claudio Hermida and Bart Jacobs. Structural induction and coin-
duction in a fibrational setting. Information and Computation,
145(2):107–152, 1998. (Cited on pages 12, 41, 50, 52, 56, and 104.)

[HJ04] Jesse Hughes and Bart Jacobs. Simulations in coalgebra. Theoretical
Computer Science, 327(1-2):71–108, 2004. (Cited on pages 92, 113,
114, and 115.)

[HK71] John Hopcroft and Richard Karp. A linear algorithm for testing equiv-
alence of finite automata. Technical Report 114, Cornell University,
December 1971. (Cited on page 70.)

[HK11] Helle Hvid Hansen and Bartek Klin. Pointwise extensions of gsos-
defined operations. Mathematical Structures in Computer Science,
21(2):321–361, 2011. (Cited on page 141.)

[HKP09] Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit. Neighbourhood
structures: Bisimilarity and basic model theory. Logical Methods in
Computer Science, 5(2), 2009. (Cited on page 68.)

[HKR14] Helle Hvid Hansen, Clemens Kupke, and Jan Rutten. Stream differen-
tial equations: Specification formats and solution methods. Technical
Report No. FM-1404, CWI, 2014. (Cited on pages 11, 14, 26, 27, 32,
38, 45, 47, and 65.)

[HMSW11] Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Con-
current kleene algebra and its foundations. Journal of Logic and Alge-
braic Programming, 80(6):266–296, 2011. (Cited on page 36.)

[HN11] Fritz Henglein and Lasse Nielsen. Regular expression containment:
coinductive axiomatization and computational interpretation. In
Thomas Ball and Mooly Sagiv, editors, 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, pro-
ceedings, pages 385–398. ACM, 2011. (Cited on page 38.)

[HNDV13] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The
power of parameterization in coinductive proof. In Giacobazzi and
Cousot [GC13], pages 193–206. (Cited on page 9.)

[HR15] Thomas Henzinger and Jean-François Raskin. The equivalence prob-
lem for finite automata: technical perspective. Communications of the
ACM, 58(2):86, 2015. (Cited on page 38.)

166 Bibliography

[HU79] John Hopcroft and Jeffrey Ullman. Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley, 1979. (Cited on
page 19.)

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Elsevier, 1999. (Cited
on pages 52, 53, 54, 98, and 99.)

[Jac06a] Bart Jacobs. A bialgebraic review of deterministic automata, reg-
ular expressions and languages. In Kokichi Futatsugi, Jean-Pierre
Jouannaud, and José Meseguer, editors, Essays Dedicated to Joseph A.
Goguen, volume 4060 of LNCS, pages 375–404. Springer, 2006. (Cited
on page 9.)

[Jac06b] Bart Jacobs. Distributive laws for the coinductive solution of recur-
sive equations. Information and Computation, 204(4):561–587, 2006.
(Cited on pages 14, 15, 62, 139, and 141.)

[Jac12] Bart Jacobs. Introduction to coalgebra. Towards mathematics of states
and observations, 2012. Draft. (Cited on pages 12, 41, 50, 51, 103,
and 149.)

[JNRS11] Bart Jacobs, Milad Niqui, Jan Rutten, and Alexandra Silva. Preface.
Theoretical Computer Science, 412(38):4967–4968, 2011. (Cited on
page 12.)

[Joh75] Peter Johnstone. Adjoint lifting theorems for categories of algebras.
Bulletin of the London Mathematical Society, 7:294–297, 1975. (Cited
on page 62.)

[JR12] Bart Jacobs and Jan Rutten. An introduction to (co)algebras and
(co)induction. In Advanced Topics in Bisimulation and Coinduction
[SR12], pages 38–99. (Cited on pages 11, 41, and 43.)

[JSS12] Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via
determinization. In Dirk Pattinson and Lutz Schröder, editors, Coal-
gebraic Methods in Computer Science - 11th International Workshop,
CMCS 2012, Revised Selected Papers, volume 7399 of Lecture Notes in
Computer Science, pages 109–129. Springer, 2012. (Cited on pages 14,
46, 60, 62, and 63.)

[Kel80] Max Kelly. A unified treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves, and so on. Bul-
letin of the Australian Mathematical Society, 22:1–84, 1980. (Cited on
page 145.)

[KKV12] Clemens Kupke, Alexander Kurz, and Yde Venema. Completeness for
the coalgebraic cover modality. Logical Methods in Computer Science,
8(3), 2012. (Cited on page 51.)

167

[Kli04] Bartek Klin. Adding recursive constructs to bialgebraic semantics.
Journal of Logic and Algebraic Programming, 60-61:259–286, 2004.
(Cited on pages 16 and 139.)

[Kli07] Bartek Klin. Bialgebraic methods in structural operational semantics:
Invited talk. Electronic Notes Theoretical Computer Science, 175(1):33–
43, 2007. (Cited on pages 15 and 121.)

[Kli09] Bartek Klin. Structural operational semantics for weighted transition
systems. In Jens Palsberg, editor, Semantics and Algebraic Specification,
Essays Dedicated to Peter D. Mosses on the Occasion of His 60th Birthday,
volume 5700 of Lecture Notes in Computer Science, pages 121–139.
Springer, 2009. (Cited on pages 14, 48, 68, and 84.)

[Kli11] Bartek Klin. Bialgebras for structural operational semantics: An in-
troduction. Theoretical Computer Science, 412(38):5043–5069, 2011.
(Cited on pages 14, 41, 60, 61, 63, 64, 65, 132, 139, and 156.)

[KN12] Alexander Krauss and Tobias Nipkow. Proof pearl: Regular expression
equivalence and relation algebra. Journal of Automated Reasoning,
49(1):95–106, 2012. (Cited on pages 19 and 38.)

[KN14] Bartek Klin and Beata Nachyla. Distributive laws and decidable prop-
erties of SOS specifications. In Johannes Borgström and Silvia Crafa,
editors, Combined 21st International Workshop on Expressiveness in
Concurrency and 11th Workshop on Structural Operational Semantics,
EXPRESS/SOS 2014, proceedings, volume 160 of EPTCS, pages 79–93,
2014. (Cited on page 139.)

[KNR11] Clemens Kupke, Milad Niqui, and Jan Rutten. Stream differential
equations: concrete formats for coinductive definitions. Technical
Report No. RR-11-10, Oxford University, 2011. (Cited on pages 27
and 32.)

[Koz90] Dexter Kozen. On Kleene algebras and closed semirings. In Branislav
Rovan, editor, MFCS, volume 452 of Lecture Notes in Computer Science,
pages 26–47. Springer, 1990. (Cited on page 26.)

[KS14] Dexter Kozen and Alexandra Silva. Practical coinduction. To appear in
Mathematical Structures in Computer Science, 2014. (Cited on page 9.)

[Lan98] Saunders Mac Lane. Categories for the Working Mathematician. Grad-
uate Texts in Mathematics. Springer New York, 1998. (Cited on
pages 41 and 98.)

[Len98] Marina Lenisa. Themes in Final Semantics. PhD thesis, Università di
Pisa-Udine, 1998. (Cited on page 41.)

168 Bibliography

[Len99] Marina Lenisa. From set-theoretic coinduction to coalgebraic coin-
duction: some results, some problems. Electronic Notes Theoretical
Computer Science, 19:2–22, 1999. (Cited on pages 15, 16, and 117.)

[LGCR09] Dorel Lucanu, Eugen-Ioan Goriac, Georgiana Caltais, and Grigore
Rosu. CIRC: A behavioral verification tool based on circular coinduc-
tion. In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki, editors,
Algebra and Coalgebra in Computer Science, Third International Con-
ference, CALCO 2009, proceedings, volume 5728 of Lecture Notes in
Computer Science, pages 433–442. Springer, 2009. (Cited on pages 9,
19, and 38.)

[LLYL14] Lingyun Luo, Xinxin Liu, Xiaohua Yang, and Zhiming Liu. Up-to tech-
nique for product functorâŃĘ. Journal of Computational Information
Systems, 10(22):9597–9607, 2014. (Cited on page 94.)

[LPW00] Marina Lenisa, John Power, and Hiroshi Watanabe. Distributivity
for endofunctors, pointed and co-pointed endofunctors, monads and
comonads. Electronic Notes Theoretical Computer Science, 33:230–260,
2000. (Cited on pages 15, 93, and 117.)

[LPW04] Marina Lenisa, John Power, and Hiroshi Watanabe. Category the-
ory for operational semantics. Theoretical Computer Science, 327(1-
2):135–154, 2004. (Cited on pages 16, 64, 139, and 160.)

[Luo06] Lingyun Luo. An effective coalgebraic bisimulation proof method.
Electronic Notes Theoretical Computer Science, 164(1):105–119, 2006.
(Cited on pages 16 and 117.)

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of
LNCS. Springer, 1980. (Cited on pages 10 and 47.)

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Com-
puter Science, 25:267–310, 1983. (Cited on pages 13, 15, 39, 67,
and 71.)

[Mil89] Robin Milner. Communication and concurrency. PHI Series in computer
science. Prentice Hall, 1989. (Cited on pages 9 and 15.)

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Com-
puter Science, 2(2):119–141, 1992. (Cited on page 120.)

[Mis15] Michael Mislove. Semantics column. SIGLOG News, 2(2), 2015. (Cited
on page 12.)

[MM07] Ernie Manes and Philip Mulry. Monad compositions I: General con-
structions and recursive distributive laws. Theory and Applications of
Categories, 18(7):172–208, 2007. (Cited on pages 16, 152, and 160.)

169

[MMS13] Stefan Milius, Lawrence S. Moss, and Daniel Schwencke. Abstract gsos
rules and a modular treatment of recursive definitions. Logical Meth-
ods in Computer Science, 9(3:28):52 pp., 2013. (Cited on pages 14
and 139.)

[MPdS12] Nelma Moreira, David Pereira, and Simão de Sousa. Deciding regular
expressions (in-)equivalence in Coq. In Wolfram Kahl and Timothy
Griffin, editors, Relational and Algebraic Methods in Computer Science
- 13th International Conference, RAMiCS 2012, proceedings, volume
7560 of Lecture Notes in Computer Science, pages 98–113. Springer,
2012. (Cited on page 38.)

[MR05] Mohammad Reza Mousavi and Michel Reniers. Congruence for struc-
tural congruences. In Sassone [Sas05], pages 47–62. (Cited on
pages 15, 16, 120, 133, 134, 135, and 138.)

[NR09] Milad Niqui and Jan Rutten. Coinductive predicates as final coalge-
bras. In 6th Workshop on Fixed Points in Computer Science, FICS 2009,
proceedings, pages 79–85, 2009. (Cited on page 51.)

[NR11] Milad Niqui and Jan Rutten. A proof of moessner’s theorem by coin-
duction. Higher-Order and Symbolic Computation, 24(3):191–206,
2011. (Cited on pages 10 and 13.)

[NT14] Tobias Nipkow and Dmitriy Traytel. Unified decision procedures for
regular expression equivalence. Archive of Formal Proofs, 2014, 2014.
(Cited on page 38.)

[Okh13] Alexander Okhotin. Conjunctive and boolean grammars: The true
general case of the context-free grammars. Computer Science Review,
9:27–59, 2013. (Cited on page 30.)

[Par81] David Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Theoretical Computer Science, volume 104 of LNCS,
pages 167–183. Springer, 1981. (Cited on pages 9, 10, 20, and 47.)

[Plo01] Gordon Plotkin. Bialgebraic semantics and recursion (extended ab-
stract). Electronic Notes Theoretical Computer Science, 44(1):285–288,
2001. (Cited on pages 16 and 139.)

[Pou07] Damien Pous. Complete lattices and up-to techniques. In Zhong Shao,
editor, Programming Languages and Systems, 5th Asian Symposium,
APLAS 2007, proceedings, volume 4807 of Lecture Notes in Computer
Science, pages 351–366. Springer, 2007. (Cited on pages 13, 15, 67,
and 75.)

[PS12] Damien Pous and Davide Sangiorgi. Enhancements of the bisimula-
tion proof method. In Advanced Topics in Bisimulation and Coinduction

170 Bibliography

[SR12], pages 233–289. (Cited on pages 13, 15, 27, 67, 68, 72, 75,
81, 82, 83, 119, 120, and 139.)

[PW02] John Power and Hiroshi Watanabe. Combining a monad and a
comonad. Theoretical Computer Science, 280(1-2):137–162, 2002.
(Cited on page 148.)

[RB14] Jurriaan Rot and Marcello Bonsangue. Combining bialgebraic seman-
tics and equations. In Anca Muscholl, editor, Foundations of Software
Science and Computation Structures - 17th International Conference,
FoSSaCS 2014, Proceedings, volume 8412 of Lecture Notes in Com-
puter Science, pages 381–395. Springer, 2014. (Cited on pages 17,
18, and 122.)

[RB15] Jurriaan Rot and Marcello Bonsangue. Structural congruence for bial-
gebraic semantics. Submitted, 2015. (Cited on pages 17 and 83.)

[RBB+15] Jurriaan Rot, Filippo Bonchi, Marcello Bonsangue, Damien Pous, Jan
Rutten, and Alexandra Silva. Enhanced coalgebraic bisimulation. To
appear in Mathematical Structures in Computer Science, 2015. (Cited
on pages 17, 18, and 80.)

[RBR13a] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Coalgebraic
bisimulation-up-to. In Peter van Emde Boas, Frans Groen, Giuseppe
Italiano, Jerzy Nawrocki, and Harald Sack, editors, 39th International
Conference on Current Trends in Theory and Practice of Computer Sci-
ence, SOFSEM 2013, proceedings, volume 7741 of Lecture Notes in Com-
puter Science, pages 369–381. Springer, 2013. (Cited on pages 17
and 18.)

[RBR13b] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Coinductive proof
techniques for language equivalence. In Adrian Horia Dediu, Carlos
Martín-Vide, and Bianca Truthe, editors, Language and Automata The-
ory and Applications - 7th International Conference, LATA 2013, pro-
ceedings, volume 7810 of Lecture Notes in Computer Science, pages
480–492. Springer, 2013. (Cited on pages 16 and 18.)

[RBR15] Jurriaan Rot, Marcello Bonsangue, and Jan Rutten. Proving language
inclusion and equivalence by coinduction. To appear in Information
and Computation, 2015. (Cited on pages 16 and 18.)

[RT93] Jan Rutten and Daniele Turi. Initial algebra and final coalgebra se-
mantics for concurrency. In Jaco de Bakker, Willem de Roever, and
Grzegorz Rozenberg, editors, A Decade of Concurrency, Reflections and
Perspectives, REX School/Symposium, 1993, Proceedings, volume 803
of Lecture Notes in Computer Science, pages 530–582. Springer, 1993.
(Cited on page 14.)

171

[Rut98a] Jan Rutten. Automata and coinduction (an exercise in coalgebra).
In Davide Sangiorgi and Robert de Simone, editors, CONCUR 1998:
Concurrency Theory, 9th International Conference, proceedings, volume
1466 of Lecture Notes in Computer Science, pages 194–218. Springer,
1998. (Cited on pages 9, 13, 19, 21, 22, 26, 37, and 39.)

[Rut98b] Jan Rutten. Relators and metric bisimulations. Electronic Notes Theo-
retical Computer Science, 11:252–258, 1998. (Cited on page 50.)

[Rut00] Jan Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249(1):3–80, 2000. (Cited on pages 11, 41, 43, 46,
47, 78, 79, 80, 84, and 138.)

[Rut03] Jan Rutten. Behavioural differential equations: a coinductive calculus
of streams, automata, and power series. Theoretical Computer Science,
308(1-3):1–53, 2003. (Cited on pages 9, 10, 11, 19, 26, 28, 45, 47,
and 75.)

[Rut05] Jan Rutten. A coinductive calculus of streams. Mathematical Structures
in Computer Science, 15(1):93–147, 2005. (Cited on page 13.)

[San98] Davide Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Computer Science, 8(5):447–479, October 1998. (Cited
on pages 13, 15, 67, and 117.)

[San12a] Davide Sangiorgi. An introduction to Bisimulation and Coinduction.
Cambridge University Press, 2012. (Cited on pages 9, 12, 48, 49, 127,
and 132.)

[San12b] Davide Sangiorgi. Origins of bisimulation and coinduction. In Ad-
vanced Topics in Bisimulation and Coinduction [SR12], pages 1–37.
(Cited on page 20.)

[Sas05] Vladimiro Sassone, editor. Foundations of Software Science and Compu-
tational Structures, 8th International Conference, FoSSaCS 2005, pro-
ceedings, volume 3441 of Lecture Notes in Computer Science. Springer,
2005. (Cited on pages 169 and 172.)

[SBBR10] Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rut-
ten. Generalizing the powerset construction, coalgebraically. In Ka-
mal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2010, Proceedings, volume 8 of LIPIcs, pages 272–283. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2010. (Cited on pages 13
and 14.)

[SBBR13] Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten.
Generalizing determinization from automata to coalgebras. Logical

172 Bibliography

Methods in Computer Science, 9(1), 2013. (Cited on pages 15, 46, 62,
and 141.)

[Sch05] Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and
beyond. In Sassone [Sas05], pages 440–454. (Cited on page 98.)

[Sil15] Alexandra Silva. A short introduction to the coalgebraic method.
SIGLOG News, 2(2), 2015. (Cited on page 12.)

[SR12] Davide Sangiorgi and Jan Rutten. Advanced Topics in Bisimulation and
Coinduction. Cambridge University Press, 2012. (Cited on pages 9,
166, 170, and 171.)

[Sta11] Sam Staton. Relating coalgebraic notions of bisimulation. Logical
Methods in Computer Science, 7(1), 2011. (Cited on page 50.)

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile
processes. Cambridge University Press, 2001. (Cited on page 119.)

[TP97] Daniele Turi and Gordon Plotkin. Towards a mathematical operational
semantics. In 12th Annual IEEE Symposium on Logic in Computer Sci-
ence, 1997, proceedings, pages 280–291. IEEE Computer Society, 1997.
(Cited on pages 9, 14, 26, 41, 60, 62, 63, 65, and 82.)

[Trn80] Vera Trnková. General theory of relational automata. Fundamenta
Informaticae, 3(2):189–234, 1980. (Cited on page 51.)

[Tur96] Daniele Turi. Functorial Operational Semantics and its Denotational
Dual. PhD thesis, Free University, Amsterdam, June 1996. (Cited on
page 41.)

[Wat02] Hiroshi Watanabe. Well-behaved translations between structural op-
erational semantics. Electronic Notes Theoretical Computer Science,
65(1):337–357, 2002. (Cited on pages 16, 148, and 160.)

[WBR13] Joost Winter, Marcello Bonsangue, and Jan Rutten. Coalgebraic char-
acterizations of context-free languages. Logical Methods in Computer
Science, 9(3), 2013. (Cited on pages 15, 16, 142, 155, 158, and 159.)

[Win14] Joost Winter. Coalgebraic Characterizations of Automata-theoretic
Classes. PhD thesis, Radboud Universiteit Nijmegen, 2014. (Cited
on page 155.)

[Win15] Joost Winter. A completeness result for finite λ-bisimulations. In An-
drew Pitts, editor, Foundations of Software Science and Computation
Structures - 18th International Conference, FoSSaCS 2015, Proceedings,
volume 9034 of Lecture Notes in Computer Science, pages 117–132.
Springer, 2015. (Cited on pages 13 and 73.)

173

[ZLL+10] Xiaocong Zhou, Yongji Li, Wenjun Li, Hai-yan Qiao, and Zhongmei
Shu. Bisimulation proof methods in a path-based specification lan-
guage for polynomial coalgebras. In Kazunori Ueda, editor, Program-
ming Languages and Systems - 8th Asian Symposium, APLAS 2010,
proceedings, volume 6461 of Lecture Notes in Computer Science, pages
239–254. Springer, 2010. (Cited on pages 16 and 117.)

Index

(ρ,E)-model, 133
(ρ,∆)-model, 124
F -invariant, 51
M(ρ), 123
(T , E)-Alg, 142
T -Alg, 58
Cat, 98
Fib(−), 98
Id, see also identity functor
M, 42
Pre, 114
Rel, 54
Rel(B), see also relation lifting
Set, 41
Σ∗, see also free monad
α̂, 60
T -alg, 58
be, 84
bhvδ, 96
bis, 70
bδ, 50, 56
•, 77, 100
cgrα, 73
CJSL, 122
B-coalg, 43
cst, 76
ctxα, 71
diag, 99∐
f , see also direct image

eq, 69
ρ†, 63
inv, 99
G, 125
M, 123

⊗, 98
P, 42
Pω, 42
Bδ, 95
ψ, 124
rfl, 70
slf, 101
sym, 70
θ, 133
tra, 70, 100
unS , 71
ϕ, 126
f -invariant, 49
f∗, see also reindexing
cfsc, 134

abstract GSOS, 63
monotone, 115, 123

algebra, 58
Arden’s rule, 25, 36
assignment rule, 123

base category, 53
BDE, see also behavioural differential

equations
behavioural differential equations, 26,

28, 45, 65
monotone, 35

behavioural equivalence, 43
bialgebra, 61
bifibration, 53
bisimilarity, see also bisimulation
bisimilarity closure, 70
bisimulation, 46

deterministic automata, 20

174

Index 175

bisimulation up-to, 68
bisimilarity, 71
congruence, 73
context, 71
equivalence, 69
languages, 24, 27
soundness, 69
union, 71

Brzozowski, 21

Cartesian lifting, 53
causal function, 32
coalgebra, 42
coinduction, 43, 48

classical, 48
coinductive extension, 43
coinductive predicate, 49, 56
compatible, 76
compatible functor, 93
complete lattice, 48
congruence closure, 27, 73

regular expressions, 23
contextual closure, 71, 101

monotone, 110
copointed functor, 63

DA, see also deterministic automata
deterministic automata, 20

bisimulation, 20
simulation, 34, 50

deterministic automaton, 44
determinization, 46, 62
diagonal relation, 42
direct image, 42, 54
distributive law, 60

monad over copointed functor, 63
monad over functor, 62

divergence, 52, 111

Eilenberg-Moore algebra, 58
equal up to bisimilarity, 83
equations, 132, 142
equivalence closure, 69

fibration, 52
fibration map, 54

fibre, 53
fibred (co)products, 54
final coalgebra, 43
fixed point, 48
free algebra, 59
free monad, 60

GSOS, 64
positive, 116

homomorphism
algebra, 58
bialgebra, 61
coalgebra, 42

identity functor, 42
inductive extension, 58
initial algebra, 58
interpretation

language, 27
of ρ and ∆, 124

invariant, 56
invariant up-to, 76, 92
inverse image, 42

kernel, 42

labelled transition system, 43
language, 20

derivative, 20
lifting, 54, 62
LTS, see also labelled transition system

modality, 97
monad, 58
monad morphism, 59
monotone function, 48
Moore automaton, 44
morphism of distributive laws, 148

non-deterministic automaton, 44

operational model, 64
ordered functor, 114

CJSL, 122
stable, 115

176 Index

polynomial functor, 58
post-fixed point, 48
predicate bifibration, 54
presentation

distributive law, 152
monad, 147

preservation of equations, 149
product

categories, 42
functors, 42
sets, 41

progression, 68

quotient monad, 145

reflexive closure, 70
reflexive coequalizer, 85
regular epimorphism, 142
reindexing, 53
relation bifibration, 54
relation lifting, 50

lax, 115
replication, 119

semiring, 42
shuffle, 31, 45
shuffle closure, 31
shuffle inverse, 45
signature, 27, 58
simulation

coalgebras, 115
deterministic automata, 34, 50
transition systems, 115

simulation up-to
languages, 35

sound, 76, 92
soundness, 69
stream, 43
stream system, 43
symmetric closure, 70

total category, 53
transfinite induction, 127
transitive closure, 70

weighted automaton, 44

weighted language inclusion, 108
weighted transition system, 44, 122

Curriculum vitae

• Born in Amsterdam 1987

• High school 1999 – 2005

Atheneum College Hageveld, Heemstede

• BSc Computer Science 2007 – 2010

Leiden University

• MSc Computer Science (cum laude) 2010 – 2011

Leiden University

• PhD student 2012 – 2015

Leiden University

• Post-doctoral researcher 2015 – . . .

Laboratoire de l’Informatique du Parallélisme (LIP), ENS Lyon

177

Acknowledgements

In the last years I had the pleasure of learning and researching in an inspiring, ex-
citing and very friendly environment. I am grateful to many people for being a part
of this; in particular Henning Basold, Stijn de Gouw, Jan van Rijn and Jonathan
Vis. I want to thank Marcello Bonsangue, Frank de Boer and Jan Rutten for getting
(and keeping) me excited about research and for their kindness. This thesis has
been improved based on detailed comments on previous versions, by Bart Jacobs,
Helle Hansen and Henning Basold. In the last years I have worked together with
many people, which, for me, has always been one of the best parts of doing re-
search. I am convinced this is the case because I have had the chance of working
with excellent people. I want to single out Bartek Klin, who hosted me during an
inspiring research period in Warsaw.

I am grateful to my family—in the first place for their support and care. To Job,
for sharing his brilliant thoughts and listening carefully. Finally I thank Hanna, for
supporting me in every possible way, and reminding me of what is valuable in life.

179

Samenvatting

Coinductie, de duale van inductie, is een fundamenteel principe voor het definië-
ren van oneindige objecten, en het bewijzen van eigenschappen van zulke objec-
ten. Het belangrijkste voorbeeld van coinductie in de informatica is bisimulatie,
een algemene karakterisatie van equivalentie tussen systemen met oneindig of cir-
culair gedrag, met een concrete bewijsmethode. Coinductieve technieken verschaf-
fen nuttige bewijsprincipes voor verschillende onderzoeksgebieden zoals de theorie
van concurrency, de studie van oneindige datastructuren en de automatentheorie.

De brede toepasbaarheid en toenemende interesse in coinductieve technieken
zijn gebaseerd op de theorie van coalgebra’s. Dit is een wiskunde theorie waarin we
eigenschappen van toestandsgebaseerde modellen van berekening kunnen begrij-
pen en bewijzen op een hoog abstractieniveau, en deze eigenschappen vervolgens
toepassen op concrete systemen. De theorie van coalgebra’s geeft een structureel
en algemeen perspectief op bisimulatie en coinductie, met een canonieke karakte-
risatie van equivalentie en bijbehorende bewijsprincipes.

In dit proefschrift ontwikkelen we technieken die coinductief redeneren ver-
eenvoudigen en verbeteren. We gebruiken hiervoor de theorie van coalgebra’s, om
algemeen toepasbare methoden te verkrijgen. In het eerste deel van het proef-
schrift introduceren we verbeteringen van coinductieve bewijsprincipes, en in het
tweede gedeelte van coinductieve definitieprincipes.

We introduceren een coalgebraische theorie van verbeterde bewijstechnieken
voor bisimilariteit, in Hoofdstuk 4. Onze theorie generaliseert de zogeheten up-to-
technieken, die geintroduceerd zijn door Milner en Sangorgi om het rederen over
processen te vereenvoudigen, van processen naar een breed scala aan toestands-
gebaseerde systemen, zoals (niet)deterministische automaten, systemen die on-
eindige rijtjes representeren en transitiesystemen met kwantitatieve informatie. In
Hoofdstuk 2 passen we deze technieken toe om te redeneren over formele talen. In
Hoofdstuk 5 worden onze bewijsprincipes verder gegeneraliseerd, op basis van een
algemeen perspectief op coinductieve predicaten, zoals geïntroduceerd door Her-
mida en Jacobs. Met deze generalisatie verkrijgen we verbeterde bewijsprincipes
voor willekeurige coinductieve predicaten, wat we toepassen om nieuwe methoden
te verkijgen voor het redeneren over simulatie van transitiesystemen, taalinclusie
van automaten met kwantitatieve informatie, en divergentie van processen.

Coinductieve definitietechnieken zijn geschikt voor het definiëren en bestude-
ren van de semantiek van talen. Turi en Plotkin hebben getoond dat men een

181

182 Samenvatting

compositionele semantiek kan verkrijgen door de interactie tussen syntax (gemo-
delleerd door algebra’s) en observaties (gemodelleerd door coalgebra’s) te specifi-
ceren door middel van een zogeheten distributieve wet. In Hoofdstuk 6 laten we
zien hoe zulke distributieve wetten geïntegreerd kunnen worden met recursieve
vergelijkingen, om zo het specificeren van talen te vereenvoudigen. Het belang-
rijkste resultaat uit dit hoofdstuk is dat de interpretatie van een specificatie, die
recursieve gelijkheden van een bepaalde vorm kan bevatten, compositioneel is, en
dat de bewijsprincipes uit eerdere hoofdstukken gebruikt kunnen worden.

Distributieve wetten kunnen nuttig zijn om coinductief gedefinieerde talen te
bestuderen, maar ze zijn soms moeilijk te beschrijven. In Hoofdstuk 7 laten we zien
hoe distributieve wetten gepresenteerd kunnen worden als quotient van andere
distributieve wetten, die op hun beurt makkelijk te presenteren zijn met gebruik
van bestaande technieken. We passen onze techniek toe om eenvoudig distribu-
tieve wetten af te leiden voor de semantiek van operaties op oneinidige rijtjes en
contextvrije grammatica’s.

Titles in the IPA Dissertation Series since 2009

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital
Exchange. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top
of Proof Assistants and making Proof As-
sistants available over the Web. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specifica-
tion and Verification for Aspect-Oriented
Languages. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML Model-
ing on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Discov-
ery of Knowledge - Foundations, Imple-
mentations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Compo-
nent Connectors. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty

of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty
of Sciences, Department of Computer
Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty of
Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Con-
fidentiality Risk Assessment in Networks
of Organizations. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilistic
and Nondeterministic Systems. Faculty
of Science, Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.
Faculty of Mathematics and Computer
Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty of
Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution.
Faculty of Mathematics and Computer
Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime En-
forcement. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2011-14

M. Raffelsieper. Cell Libraries and Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Qual-
ity of Service of Component Connectors.
Faculty of Mathematics and Natural
Sciences, UL. 2011-17

R. Middelkoop. Capturing and Exploit-
ing Abstract Views of States in OO Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transfor-
mations. Faculty of Mathematics and
Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,
Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection
for Programming Language Grammars.
Faculty of Science, UvA. 2011-21

M. Izadi. Model Checking of Compo-
nent Connectors. Faculty of Mathemat-
ics and Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-
guage Workbenches. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural
Sciences, UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Pro-
gram Properties with Attribute Gram-
mars, Revisited. Faculty of Science,
UU. 2012-02

Z. Hemel. Methods and Techniques
for the Design and Implementation of
Domain-Specific Languages. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and
Practice. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty

of Electrical Engineering, Mathematics
& Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on
Verification of Wireless Sensor Net-
works and Abstraction Learning for Sys-
tem Inference. Faculty of Science,
Mathematics and Computer Science,
RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Composi-
tional Interchange Format for Hybrid
Systems: Design and Implementation.
Faculty of Mechanical Engineering,
TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by Means
of Annotated Graph Mining Algorithms.
Faculty of Mathematics and Natural
Sciences, UL. 2012-09

S.D. Vermolen. Software Language
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches
to Reliable Software. Faculty of
Mathematics and Computer Science,
TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els – An Engineering Perspective. Faculty
of Mathematics and Computer Science,
TU/e. 2012-12

W. Heijstek. Software Architecture
Design in Global and Model-Centric
Software Development. Faculty of
Mathematics and Natural Sciences,
UL. 2012-13

C. Kop. Higher Order Termination. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2012-14

A. Osaiweran. Formal Development of
Control Software in the Medical Systems
Domain. Faculty of Mathematics and
Computer Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2012-16

H. Beohar. Refinement of Communica-
tion and States in Models of Embedded
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of
Real-Time Task Systems using Timed
Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-02

E. Zambon. Abstract Graph Transfor-
mation – Theory and Practice. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2013-06

L.E. Mamane. Interactive mathemati-
cal documents: creation and presenta-
tion. Faculty of Science, Mathematics
and Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-
sition and synchronization of real-time

components upon one processor. Faculty
of Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer
Science, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped
robots, and dynamic labelings for mov-
ing points. Faculty of Mathematics and
Computer Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Meth-
ods in Software Development. Faculty
of Science, Mathematics and Computer
Science, RU. 2013-15

C. Tankink. Documentation and Formal
Mathematics — Web Technology meets
Proof Assistants. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-

ulty of Mathematics and Natural Sci-
ences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty of
Science, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Con-
trol Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-03

C.-P. Bezemer. Performance Opti-
mization of Multi-Tenant Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-06

J. Winter. Coalgebraic Characteri-
zations of Automata-Theoretic Classes.
Faculty of Science, Mathematics and
Computer Science, RU. 2014-07

W. Meulemans. Similarity Mea-
sures and Algorithms for Carto-
graphic Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electri-

cal Engineering, Mathematics & Com-
puter Science, UT. 2014-09

A.P. van der Meer. Domain Specific
Languages and their Type Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collab-
oration in Online Software Communi-
ties. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the
Gap between Active Learning and Real-
World Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Mod-
eling: Software Product Lines and Be-
yond. Faculty of Mathematics and Nat-
ural Sciences, UL. 2014-14

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record
Linkage. Faculty of Mathematics and
Natural Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity Man-
agement: Bridging the Cryptographic
Design of ABCs with the Real World. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstrac-
tions for Visualization and Interaction.
Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibil-
ity and Trustworthiness. Faculty of
Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics and
Computer Science, TU/e. 2015-08

S. Cranen. Getting the point — Ob-
taining and understanding fixpoints in
model checking. Faculty of Mathematics
and Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned in
the analysis of the EMV and TLS se-
curity protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-11

Y. Dajsuren. On the Design of an Archi-
tecture Framework and Quality Evalu-
ation for Automotive Software Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2015-12

J. Bransen. On the Incremental Eval-
uation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of
Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Systems.
Faculty of Science, Mathematics and
Computer Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2015-18

	Introduction
	Coinductive reasoning
	Coalgebras
	Classical and coalgebraic coinduction

	Enhanced coinduction
	Coinductive proofs
	Coinductive definitions

	Related work
	Outline

	Coinduction for languages
	Bisimulations and coinduction
	Regular operations

	Bisimulation up-to for regular operations
	Sound operations for bisimulation up-to
	Language equations with complement and intersection
	Shuffle (closure)
	Causal functions

	Simulation (up-to)
	Discussion and related work

	Preliminaries
	Coalgebras
	Coinductive definitions
	Bisimulations and coinductive proofs

	Classical and coalgebraic coinduction
	Coalgebraic bisimulations via relation lifting
	Classical coinduction in a category

	Liftings and coinduction in a fibration
	Fibrations
	Coinductive predicates in a fibration

	Algebras
	Monads

	Bialgebras and distributive laws
	Distributive laws of monads over (copointed) functors
	Abstract GSOS

	Bisimulation up-to
	Progression and bisimulation up-to
	Examples
	Compatible functions
	Compatibility results
	Relational composition
	Contextual closure
	Bisimulation up-to modulo bisimilarity

	Behavioural equivalence up-to
	Discussion and related work

	Coinduction up-to
	Compatible functors
	Compatibility results
	Behavioural equivalence
	Relational composition and equivalence
	Contextual closure

	Examples
	Weighted language inclusion
	Divergence of processes

	Compositional predicates
	Simulation up-to

	Discussion and related work

	Bialgebraic semantics with equations
	Assignment rules
	Integrating assignment rules in abstract GSOS
	Structural congruences
	Discussion and related work

	Presenting distributive laws
	Quotients of monads
	Quotients of distributive laws
	Distributive laws over plain behaviour functors
	Distributive laws over copointed functors
	Distributive laws over comonads

	Quotients of bialgebras
	Discussion and related work

	Bibliography
	Index
	Curriculum vitae
	Acknowledgements
	Samenvatting

