
Chapter 19
Verification of Counting Sort and Radix Sort

Stijn de Gouw, Frank S. de Boer, Jurriaan Rot

Sorting is an important algorithmic task used in many applications. Two main as-
pects of sorting algorithms which have been studied extensively are complexity and
correctness. [Foley and Hoare, 1971] published the first formal correctness proof of
a sorting algorithm (Quicksort). While this is a handwritten proof, the development
and application of (semi)-automated theorem provers has since taken a huge flight.
The major sorting algorithms Insertion sort, Heapsort and Quicksort were proven
correct by Filliâtre and Magaud [1999] using the proof assistant Coq. Recently,
Sternagel [2013] formalized a proof of Mergesort within the interactive theorem
prover Isabelle/HOL.

In this chapter we discuss the formalization of the correctness of Counting sort
and Radix sort in KeY, based on the paper [de Gouw et al., 2014]. Counting sort is a
sorting algorithm based on arithmetic rather than comparisons. Radix sort is tailored
to sorting arrays of large numbers. It uses an auxiliary sorting algorithm, such as
Counting sort, to sort the digits of the large numbers one-by-one. The correctness
of Radix sort requires the stability of the auxiliary sorting algorithm. Stability here
means that the order between different occurrences of the same number is preserved.
To the best of our knowledge, stability has only been formalized in higher-order logic
[Sternagel, 2013].

We provide the first mechanized correctness proof of Counting sort and Radix
sort. Several industrial case studies have already been carried out in KeY [Ahrendt
et al., 2012, Mostowski, 2005, 2007]. In contrast to most industrial code, which is
large but relatively straightforward, Counting sort and Radix sort are two relatively
small but ingenious and nonstandard algorithms with inherently complex correctness
proofs.

19.1 Counting Sort and Radix Sort Implementation

Counting sort is a sorting algorithm based on addition and subtraction rather than
comparisons. Here we consider a version of Counting sort that takes as input an array

599

600 19 Verification of Counting Sort and Radix Sort

a of large numbers in base-k and a column index m. Each large number is represented
by an array of digits with the least significant digit first, thus a is a two dimensional
array of nonnegative integers (i.e., a[1][0] is the least significant digit of the second
large number in a). It then sorts the large numbers in a based solely on the value
of their m+1-th digit. Listing 19.1 shows the Java implementation. The worst-case
time complexity is in O(n+ k), where n is the number of elements in a1.

1 public static int[][] countSort(int[][] a, int k, int m) {
2 int[] c = new int[k]; //initializes to zero

3 int[][] res = new int[a.length][];
4

5 for(int j=0; j<a.length; j++) {
6 c[a[j][m]]=c[a[j][m]]+1;
7 }
8 for(int j=1; j<k; j++) {
9 c[j]=c[j]+c[j-1];

10 }
11 for(int j=a.length-1; j>=0; j--) {
12 c[a[j][m]]=c[a[j][m]]-1;
13 res[c[a[j][m]]]=a[j];
14 }
15 return res;
16 }

Listing 19.1 Counting sort

Intuitively, the algorithm works as follows. After the first loop, for an arbitrary
value i 2 [0 : k� 1], c[i] contains the number of times that i occurs in column m
of a. During the second loop, the partial sums of c are computed (i.e., c[i] = c[0]+
. . .+ c[i]), so that c[i] contains the number of elements in (column m of) a that are
less than or equal to i. At this moment, for every value i occurring in a, c[i] can
thus be interpreted as being the index in the sorted array before which the large
number with value i in column m should occur — if there are multiple such large
numbers, then these should be placed to the left. Indeed in the final loop, c is used
to place the elements of a in the resulting sorted array res by, for each element a[i],
first decreasing c[a[i][m]] by one and then placing a[i] at position c[a[i][m]]. Notice
that equal elements are thus inserted from right to left — so by starting at the last
element of a and counting down, the algorithm becomes stable. Thus, the order on
the previous digits is preserved.

Figure 19.1 shows an example execution of the last loop of a call to method
countSort(a, 3, 2), where the input array a contains respectively the arrays 1
0 2, 2 1 1 and 0 2 1 (representing the numbers 201, 112 and 120), with digits in
base k = 3; sorting is done based on column m = 2, which has the digits 2, 1 and 1
respectively. The far left shows the contents of res and C just before the first iteration
of the last loop. In the first iteration, the number 120 (the last number of the input

1 Note that this does not conflict with the well-known lower bound of nlg(n), since that holds for
sorting algorithms based on comparing array elements.

19.1. Counting Sort and Radix Sort Implementation 601

Content of the array res:
null

null

null

=)
null

0 2 1
null

=)
2 1 1
0 2 1
null

=)
2 1 1
0 2 1
1 0 2

Content of the array C:
0 2 3 =) 0 1 3 =) 0 0 3 =) 0 0 2

Figure 19.1 Iterations of the last loop in Counting sort with input arrays 1 0 2, 2 1 1 and 0 2 1.

1 0 2
0 2 1
2 1 1

=)
0 2 1
1 0 2
2 1 1

=)
1 0 2
2 1 1
0 2 1

=)
2 1 1
0 2 1
1 0 2

Figure 19.2 Successive iterations of the Radix sort loop, highlighting the column processed by
stableSort.

array) is placed at its sorted position in row 2, as indicated by the highlighted value 2
of that step in the C array.

Radix sort sorts an array of large numbers digit-by-digit, using an auxiliary stable
sorting algorithm stableSort to sort on each individual digit. This is reminiscent
of the typical way one sorts a list of words: letter by letter. A suitable candidate
for stableSort is the implementation of Counting sort given in Listing 19.1. An
implementation of Radix sort is given in Listing 19.2. We assume that all large
numbers in a have the same length (in particular, all of them have a[0].length digits).

1 public static int[][] radixSort(int[][] a, int k) {
2 for(int i=0; i<a[0].length; i++) {
3 a = stableSort(a,k,i);
4 }
5 return a;
6 }

Listing 19.2 Radix sort

The call to stableSort(a, k, i) sorts a by the i-th column. The array a is sorted
column by column, starting from the least significant digit at index 0 up to the most
significant digit at index a[0].length�1. Notice that it is essential for Radix sort that
this auxiliary algorithm is stable, so that the order induced by the earlier iterations is
preserved on equal elements in the i-th column.

Figure 19.2 illustrates an example run of the algorithm, showing the contents of
the array a after each loop iteration. The input array, representing the large numbers
201, 120 and 112 with digits in base k = 3, is shown on the far left and the sorted
output is shown on the far right.

602 19 Verification of Counting Sort and Radix Sort

19.2 High-Level Correctness Proof

As we have seen in the previous section, the correctness of Radix sort depends on the
stability of the auxiliary sorting algorithm. In this section, we formalize the property
of being “stable” and give a high-level proof of the correctness and the stability of
Counting sort. Subsequently we prove the correctness of Radix sort. All contracts
and invariants are formalized in JML.

To avoid getting side-tracked by technicalities, and to simplify the presentation,
we assume in the high-level proof that all arrays have positive length, and there
are no “Array Index Out of Bounds Exceptions.” We drop these assumptions in the
mechanized proofs and show in Section 19.3 how this affects the specifications and
corresponding correctness proofs.

The following JML contract specifies a generic sorting algorithm that sorts a
two-dimensional array based solely on the numbers occurring in a given column m:
/*@ public normal_behavior

@ requires

@ k > 0 && 0 <= m && m < a[0].length
@ && (\forall int row; 0 <= row && row < a.length;
@ a[row].length == a[0].length)
@ && (\forall int row; 0 <= row && row < a.length;
@ 0 <= a[row][m] && a[row][m] < k);
@ ensures

@ \dl_seqPerm(\dl_array2seq(\old(a)),
@ \dl_array2seq(\result))
@ && (\forall int row;
@ 0 <= row && row < \result.length-1;
@ \result[row][m] <= \result[row+1][m]);
@*/

public static int[][] countSort(int[][] a, int k, int m);
Listing 19.3 Generic sorting contract

As explained in Section 8.1.2.9, the \dl_ prefix is an escape sequence that allows
referencing functions defined in JavaDL in JML specifications. The JavaDL function
array2seq converts an array into a sequence and the JavaDL predicate seqPerm is true
if the two sequences passed as parameters are permutations of each other. Chapter 5
has a precise definition of the predicate seqPerm .

The precondition, specified by the JML requires clause, states that all large
numbers have the same length a[0].length, and furthermore that all digits in the
m-th column are bounded by k. In the postcondition (ensures), the formula
seqPerm(array2seq(old(a)),array2seq(\result)) guarantees that the returned array
\result is a permutation of the input array a. The second conjunct of the postcondition
states that \result is sorted with respect to column m.

The above contract specifies correctness, but not stability. The contract below
formalizes stability, by ensuring that if two different large numbers have the same

19.2. High-Level Correctness Proof 603

value for the m+1-th digit, then their original relative order from the input array is
preserved:
/*@ public normal_behavior

@ requires

@ 0 <= m && m < a[0].length
@ && (\forall int row; 0 <= row && row < a.length;
@ a[row].length == a[0].length);
@ ensures

@ (\forall int row; 0 <= row && row < \result.length-1;
@ \result[row][m] == \result[row+1][m]
@ ==> (\exists int i,j;
@ 0 <= i && i < j && j < a.length;
@ \result[row]==\old(a[i])
@ && \result[row+1]==\old(a[j])));
@*/

public static int[][] countSort(int[][] a, int k, int m);
Listing 19.4 Contract specifying stability

19.2.1 General Auxiliary Functions

For a human readable proof of Counting sort, and for both the specification and proof
of Radix sort, it is absolutely crucial to introduce suitable abstractions. We therefore
define the following auxiliary functions:

Name Meaning
val(b,r,d,a) Âd

i=0(a[r][i]⇤bi)
cntEq(x,r,a,c) |{i | 0 i r^a[i][c] = x}|
cntLt(x,a,c) |{i | 0 i < a.length^a[i][c]< x}|
pos(x,r,a,c) cntEq(x,r,a,c)+ cntLt(x,a,c)

Intuitively, val(b,r,d,a) is the large number represented in base b which is stored
in row r of the array of large numbers a (and d is the index of the last digit). The
function cntEq counts the number of elements in the array segment a[0 . . . r][c]
equal to x in some fixed column c. The function cntLt counts the number of elements
in the array segment a[0 . . . a.length� 1][c] smaller than x in the column c. As a
consequence of these definitions, pos(a[i][c], i,a,c)�1 is the position of a[i] in the
sorted version of a.

The function val can easily be implemented in JML using the built-in constructs
sum and product. The value of cntEq(x,r,a,c) (and similarly cntLt(x,a,c)) can be
represented in JML by:
\sum int i; 0<=i && i<=r; (x==a[i][c]) ? 1 : 0

604 19 Verification of Counting Sort and Radix Sort

19.2.2 Counting Sort Proof

With the above definitions in place, we are ready to prove that the implementation of
Counting sort satisfies the contract in Listing 19.4. To this end, we devise the loop
invariants of Counting sort. The first loop (Listing 19.1, lines 4–5) sets c[i] to the
number of occurrences of the value i in a[0 . . . j�1][m]. Thus we use the invariant:

Java + JML
0 <= j && j <= a.length

&& \forall int i; c[i] == cntEq(i, j-1, a, m);
Java + JML

The second loop replaces each c[i] with its partial sum. We formalize this by the
following invariant:

Java + JML
1 <= j && j <= k

&& (\forall int i; 0 <= i && i <= j-1;
c[i] == cntEq(i, a.length-1, a, m) + cntLt(i, a, m))

&& (\forall int i; j <= i && i < k;
c[i] == cntEq(i, a.length-1, a, m));

Java + JML

The second conjunct ranges over the elements in c which have already been replaced
by their partial sum. The third conjunct ranges over the elements which have not
been processed yet (and hence, obey the postcondition of the first loop).

The invariant of the last loop is as follows:

Java + JML
-1 <= j && j < a.length

&& (\forall int i; 0 <= i && i < a.length;
c[a[i][m]] == pos(a[i][m], j, a, m))

&& (\forall int i; j+1 <= i && i < a.length;
res[pos(a[i][m], i, a, m)-1] == a[i]);

Java + JML

Recall that pos(a[i][m], i,a,m)� 1 is the position of a[i] in the sorted version of a.
Thus the second conjunct intuitively means that c[a[i][m]]�1 points to the position
in which a[i] should be stored in the sorted array. The assertion about res in the
third conjunct expresses that res is the sorted version of a. This invariant gives rise
to several proof obligations. We discuss the most interesting ones. For readability
we abbreviate the invariant by I. Furthermore, whenever it is clear from the context
we denote pos(x, i,a,m) by pos(x, i) and pos(a[i][m], i) by pos(i). Thus for example,
pos(i)�1 is the index of a[i] in the sorted version of a.

Our first proof obligation states that pos obeys a weak form of injectivity.

8i 2 [j : a.length�1] : pos(i) = pos(j)! a[j] = a[i]

19.2. High-Level Correctness Proof 605

This follows from the definitions of pos, cntEq and cntLt. The next verification
condition characterizes the behavior of pos.

8i 2 [0 : a.length�1] : a[i][m] = a[j][m]! pos(a[j][m], j)�1 = pos(a[i][m], j�1)
^ a[i][m] 6= a[j][m]! pos(a[i][m], j) = pos(a[i][m], j�1)

The truth of the first conjunct follows from the fact that cntEq(a[j][m], j,a,m)�
1 = cntEq(a[j][m], j�1,a,m). The second conjunct holds since cntEq(x, j,a,m) =
cntEq(x, j�1,a,m) whenever x 6= a[j][m]. The next verification condition states that
after the execution of the loop (i.e., when j =�1), res must be sorted:

8i 2 [0 : a.length�2] : I ^ j =�1 ! res[i][m] res[i+1][m]

This is true since the invariant implies res[pos(i)�1] = a[i] for i 2 [0 : a.length�1].
But as remarked above, pos(i)�1 is the position of a[i] in the sorted version of a,
hence res is sorted.

The final proof obligation concerns the proof of stability:

8r 2 [0 : a.length�2] : I ^ j =�1^ res[r][m] = res[r+1][m]
!9i, j(0 i < j < a.length) : res[r] = a[i]^ res[r+1] = a[j]

Fix some arbitrary r 2 [0 : a.length�2]. We must show that I^ j =�1^ res[r][m] =
res[r + 1][m] implies 9i, j(0 i < j < a.length) : res[r] = a[i]^ res[r + 1] = a[j].
Since the function i 7! pos(i) is a bijection on [1 : a.length] we must have r =
pos(i)�1 and r+1 = pos(j)�1 for some i, j 2 [0 : a.length�1]. Hence, only i < j
remains to show. This follows from the fact that pos(i) < pos(j), together with
the monotonicity property pos(x,n) pos(x,n+ 1) for all n (which follows from
the earlier characterization of the behavior of pos). This proves the stability of our
Counting sort implementation.

19.2.3 Radix Sort Proof

The correctness of Radix sort relies on the correctness of the stable sorting algorithm
used in Radix sort. In the proof below, we assume only the contract of the generic sta-
ble sorting algorithm, instead of a particular implementation. This has the advantage
that instead of being tied to Counting sort, any stable algorithm can be used within
Radix sort, as long as it satisfies the contract of stableSort. Given the definitions
of the auxiliary functions, the specification of Radix sort is as follows:

Java + JML
/*@ public normal_behavior

@ requires

@ k > 0
@ && (\forall int j; 0 <= j && j < a.length;
@ a[j].length == a[0].length)

606 19 Verification of Counting Sort and Radix Sort

@ && (\forall int j,m; 0 <= j && j < a.length
@ && 0 <= m && m < a[j].length;
@ 0 <= a[j][m] && a[j][m] < k);
@ ensures

@ \dl_seqPerm(\dl_array2seq(\old(a)),
@ \dl_array2seq(\result))
@ && (\forall int row; 0 <= row && row < a.length-1;
@ val(k,row,\old(a[0].length)-1,\result)
@ <= val(k,row+1,\old(a[0].length)-1,\result));
@*/

public static int[][] radixSort(int[][] a, int k);
Java + JML

The last conjunct in the precondition informally means that all digits that appear in a
are nonnegative and bounded by k. The formula \forall int row (...) in the
postcondition expresses that the large number in each row of the returned array is
smaller or equal to the number in the next row, when interpreted in base k.

The correctness proof of Radix sort is based on the following loop invariant I:

JML
0 <= i && i <= a[0].length && a != null

&& \dl_seqPerm(\dl_array2seq(a), \dl_array2seq(\old(a)))
&& (\forall int row; 0 <= row && row < a.length;

\val(k,row,i-1,a) <= \val(k,row+1,i-1,a));
JML

Intuitively, the formula \forall int row (...) states that a is sorted with re-
spect to the first i digits. When proving that the body of the loop preserves I, the
main verification condition that arises states that the invariant follows from the post-
condition of the procedure call, provided that the invariant was true initially. We refer
to the contents of a before the call by introducing a logical variable A in the contract
of stableSort as follows: we add A = a to the precondition and substitute A for
old(a) in the postcondition. Let post 0 be the resulting postcondition. Formally the
main verification condition is then as follows:

I[a :=A]^ post 0[\result := a]!
8row 2 [0 : a.length�1] : val(k,row, i,a) val(k,row+1, i,a)

To see why this formula is valid, consider an arbitrary row r 2 [0 : a.length� 2].
Given the assumption I[a := A]^ post 0[\result := a], we must prove val(k,r, i,a)
val(k,r+1, i,a). From post 0[\result := a] we infer a[r][i] a[r+1][i]. We distinguish
two cases.

• a[r][i] < a[r + 1][i]. Then also a[r][i] ⇤ ki < a[r + 1][i] ⇤ ki. Clearly val(k,r, i�
1,a) < ki, since val(k,r, i� 1,a) is a number with i digits in base k, while ki

has i+1 digits in base k. But val(k,r, i,a) = val(k,r, i�1,a)+a[r][i]⇤ ki, hence
val(k,r, i,a) val(k,r+1, i,a).

19.3. Experience Report 607

• a[r][i] = a[r+1][i]. Then it suffices to prove val(k,r, i�1,a) val(k,r+1, i�
1,a). But post 0[\result := a] implies that a[r] = A[m] and a[r + 1] = A[n] for
some m,n (with 0m< n< a.length), so it suffices to prove val(k,m, i�1,A)
val(k,n, i�1,A). But the invariant implies val(k,r1, i�1,A) val(k,r2, i�1,A)
if r1 < r2. Instantiating r1 with m and r2 with n gives the desired result.

This concludes the proof of Radix sort.

19.3 Experience Report

In this section we discuss our practical experience with KeY. The following table
summarizes some statistics of the proofs in KeY:

Counting Sort Radix Sort
Rule applications 96.260 114.309
User interactions 743 (0.8%) 762 (0.7%)

“Rule applications” serves as a measure for the length of the proofs: this row contains
the total number of proof rule applications used in the proofs, whereas “User interac-
tions” indicates the number of proof rule applications that were applied manually by
the authors (i.e., required creativity). The statistics show that the degree of automation
of KeY for both algorithms was over 99%.

The mechanized proofs are significantly larger than the high-level proofs, for
several reasons. First, we used the automatic proof strategies of KeY as much as
possible, but the strategies do not always find the shortest proofs. Second, in the
actual mechanized proofs we also showed termination. Fortunately this did not
require much creativity: the ranking functions (loop variants) are trivial to find and
prove since all loops that occur are for-loops. After appropriate ranking functions
were given, the proof of termination was automatic. A third reason for the large
proofs is that Java has several features that were ignored in the high-level proofs but
complicate the mechanized KeY proofs.

One such Java feature is the fact that arrays are bounded. For example, to ensure
that the assignment res[c[a[j]]] = a[j]; does not lead to index out-of-bounds
exceptions, KeY generates four proof obligations: j must be within the bounds of the
array a (this condition must be proven twice, since a[j] occurs twice), and a[j] and
c[a[j]] must be within the array bounds of respectively C and res. This duplication of
proofs, caused by multiple references to the same array element, could be avoided by
changing the Java source to int tmp = a[j]; res[c[tmp]] = tmp;. KeY was
able to automatically prove that the array references to c in the first two loops did
not violate the array bounds, and similarly for a in the third loop. The references to
res and c in the third loop required some user interactions. In particular, it required
proving that 1 pos(i) a.length. Still, overall, less than 5% of the rule applications
concerned array bounds.

The part of the proof by far responsible for the most rule applications (over 60%!)
surprisingly is unrelated to deriving validity of the verification conditions discussed

608 19 Verification of Counting Sort and Radix Sort

in the previous section. Instead it concerns proving that the value of our auxiliary
functions cntEq, cntLt, pos and val is the same in different heaps that arise during
execution (despite using the tightest possible assignable clauses in all loops and
contracts). Note first that these functions indeed depend on the contents of the heap,
since their value depends on the contents of an array (the array object a passed as
a parameter), and arrays are allocated on the heap. Since the heap is represented
explicitly by a term in KeY, the actual KeY formalization of the definitions of these
functions contain an additional parameter Heap. In fact, since a is the only parameter
of the auxiliary functions which has a class type, the value of the auxiliary functions
depends only on the part of the heap containing a; other parts of the heap are simply
not visible. However, the program never changes the contents of a: only parts of the
heap irrelevant to the value of the auxiliary functions are changed. Unfortunately,
currently KeY cannot detect this, nor can the user specify it, without unrolling the
definition of the auxiliary functions. After unrolling, KeY could prove in most (but
not all) cases automatically that the heap was only changed in ways irrelevant to
the value of the auxiliary functions, though at the expense of a huge number of rule
applications due to the size of the involved heap terms. One partial workaround
for this is to surround any reference to the auxiliary functions by old in the loop
invariants. This seemingly small change, which causes all occurrences of auxiliary
functions to be evaluated in the same (old) heap, resulted in a reduction of the Radix
sort proof from 169.030 rule applications to a little over the current 114.309! This
change also reduced the number of manual user interactions by about 30%. A further
potential improvement would be to use model methods that return the value of the
auxiliary functions (instead of using the auxiliary functions directly), as the user can
specify an accessible clause for model methods (see Section 7.9.1).

One final discussion point concerns the permutation predicate seqPerm. The
detailed JavaDL formalization of this predicate and the sequence data type can be
found in Chapter 5. The sequence data type and corresponding permutation predicates
have been newly added to KeY 2.x but so far, little was known about the implications
regarding automation. The present case study provides some empirical results: about
20% of the total manual interactions concerned reasoning about sequences.

