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Abstract. We show how to compute efficiently with nominal sets over
the total order symmetry, by developing a direct representation of such
nominal sets and basic constructions thereon. In contrast to previous
approaches, we work directly at the level of orbits, which allows for an
accurate complexity analysis. The approach is implemented as the library
Ons (Ordered Nominal Sets).
Our main motivation is nominal automata, which are models for recog-
nising languages over infinite alphabets. We evaluate Ons in two ap-
plications: minimisation of automata and active automata learning. In
both cases, Ons is competitive compared to existing implementations
and outperforms them for certain classes of inputs.

1 Introduction

Automata over infinite alphabets are natural models for programs with un-
bounded data domains. Such automata, often formalised as register automata,
are applied in modelling and analysis of communication protocols, hardware, and
software systems (see [4,10,15,16,22,26] and references therein). Typical infinite
alphabets include sequence numbers, timestamps, and identifiers. This means
one can model data flow in such automata beside the basic control flow provided
by ordinary automata. Recently, it has been shown in a series of papers that such
models are amenable to learning [1,6,7,11,21,29] with the verification of (closed
source) TCP implementations as a prominent example [13].

A foundational approach to infinite alphabets is provided by the notion of
nominal set, originally introduced in computer science as an elegant formalism
for name binding [14,25]. Nominal sets have been used in a variety of applications
in semantics, computation, and concurrency theory (see [24] for an overview).
Bojańczyk et al. introduce nominal automata, which allow one to model lan-
guages over infinite alphabets with different symmetries [4]. Their results are
parametric in the structure of the data values. Important examples of data do-
mains are ordered data values (e.g., timestamps) and data values that can only
be compared for equality (e.g., identifiers). In both data domains, nominal au-
tomata and register automata are equally expressive [4].

Important for applications of nominal sets and automata are implementa-
tions. A couple of tools exist to compute with nominal sets. Notably, Nλ [17]
and Lois [18,19] provide a general purpose programming language to manipulate



infinite sets.1 Both tools are based on SMT solvers and use logical formulas to
represent the infinite sets. These implementations are very flexible, and the SMT
solver does most of the heavy lifting, which makes the implementations them-
selves relatively straightforward. Unfortunately, this comes at a cost as SMT
solving is in general Pspace-hard. Since the formulas used to describe sets tend
to grow as more calculations are done, running times can become unpredictable.

In the current paper, we use a direct representation, based on symmetries and
orbits, to represent nominal sets. We focus on the total order symmetry, where
data values are rational numbers and can be compared for their order. Nominal
automata over the total order symmetry are more expressive than automata over
the equality symmetry (i.e., traditional register automata [16]). A key insight is
that the representation of nominal sets from [4] becomes rather simple in the total
order symmetry; each orbit is presented solely by a natural number, intuitively
representing the number of variables or registers.

Our main contributions include the following.

– We develop the representation theory of nominal sets over the total order
symmetry. We give concrete representations of nominal sets, their products,
and equivariant maps.

– We provide time complexity bounds for operations on nominal sets such as in-
tersections and membership. Using those results we give the time complexity
of Moore’s minimisation algorithm (generalised to nominal automata) and
prove that it is polynomial in the number of orbits.

– Using the representation theory, we are able to implement nominal sets in a
C++ library Ons. The library includes all the results from the representation
theory (sets, products, and maps).

– We evaluate the performance of Ons and compare it to Nλ and Lois, using
two algorithms on nominal automata: minimisation [5] and automata learn-
ing [21]. We use randomly generated automata as well as concrete, logically
structured models such as FIFO queues. For random automata, our meth-
ods are drastically faster than the other tools. On the other hand, Lois and
Nλ are faster in minimising the structured automata as they exploit their
logical structure. In automata learning, the logical structure is not available
a-priori, and Ons is faster in most cases.

The structure of the paper is as follows. Section 2 contains background on
nominal sets and their representation. Section 3 describes the concrete represen-
tation of nominal sets, equivariant maps and products in the total order sym-
metry. Section 4 describes the implementation Ons with complexity results, and
Section 5 the evaluation of Ons on algorithms for nominal automata. Related
work is discussed in Section 6, and future work in Section 7.

1 Other implementations of nominal techniques that are less directly related to our
setting (Mihda, Fresh OCaml, and Nominal Isabelle) are discussed in Section 6.



2 Nominal sets

Nominal sets are infinite sets that carry certain symmetries, allowing a finite
representation in many interesting cases. We recall their formalisation in terms
of group actions, following [4,24], to which we refer for an extensive introduction.

Group actions. Let G be a group and X be a set. A (right) G-action is a
function · : X ×G→ X satisfying x · 1 = x and (x · g) · h = x · (gh) for all x ∈ X
and g, h ∈ G. A set X with a G-action is called a G-set and we often write xg
instead of x · g. The orbit of an element x ∈ X is the set {xg | g ∈ G}. A G-set
is always a disjoint union of its orbits (in other words, the orbits partition the
set). We say that X is orbit-finite if it has finitely many orbits, and we denote
the number of orbits by N(X).

A map f : X → Y between G-sets is called equivariant if it preserves the
group action, i.e., for all x ∈ X and g ∈ G we have f(x)g = f(xg). If an
equivariant map f is bijective, then f is an isomorphism and we write X ∼= Y .
A subset Y ⊆ X is equivariant if the corresponding inclusion map is equivariant.
The product of two G-sets X and Y is given by the Cartesian product X×Y with
the pointwise group action on it, i.e., (x, y)g = (xg, yg). Union and intersection
of X and Y are well-defined if the two actions agree on their common elements.

Nominal sets. A data symmetry is a pair (D, G) where D is a set and G is
a subgroup of Sym(D), the group of bijections on D. Note that the group G
naturally acts on D by defining xg = g(x). In the most studied instance, called
the equality symmetry, D is a countably infinite set and G = Sym(D). In this
paper, we will mostly focus on the total order symmetry given by D = Q and
G = {π | π ∈ Sym(Q), π is monotone}.

Let (D, G) be a data symmetry and X be a G-set. A set of data values S ⊆ D
is called a support of an element x ∈ X if for all g ∈ G with ∀s ∈ S : sg = s we
have xg = x. A G-set X is called nominal if every element x ∈ X has a finite
support.

Example 1. We list several examples for the total order symmetry. The set Q2

is nominal as each element (q1, q2) ∈ Q2 has the finite set {q1, q2} as its support.
The set has the following three orbits: {(q1, q2) | q1 < q2}, {(q1, q2) | q1 > q2}
and {(q1, q2) | q1 = q2}.

For a set X, the set of all subsets of size n ∈ N is denoted by Pn(X) = {Y ⊆
X | #Y = n}. The set Pn(Q) is a single-orbit nominal set for each n, with the
action defined by direct image: Y g = {yg | y ∈ Y }. The group of monotone
bijections also acts by direct image on the full power set P(Q), but this is not a
nominal set. For instance, the set Z ∈ P(Q) of integers has no finite support.

If S ⊆ D is a support of an element x ∈ X, then any set S′ ⊆ D such that
S ⊆ S′ is also a support of x. A set S ⊆ D is a least support of x ∈ X if it is a
support of x and S ⊆ S′ for any support S′ of x. The existence of least supports



is crucial for representing orbits. Unfortunately, even when elements have a finite
support, in general they do not always have a least support. A data symmetry
(D, G) is said to admit least supports if every element of every nominal set has
a least support. Both the equality and the total order symmetry admit least
supports. (See [4] for other (counter)examples of data symmetries admitting
least supports.) Having least supports is useful for a finite representation.

Given a nominal set X, the size of the least support of an element x ∈ X is
denoted by dim(x), the dimension of x. We note that all elements in the orbit of x
have the same dimension. For an orbit-finite nominal set X, we define dim(X) =
max{dim(x) | x ∈ X}. For a single-orbit set O, observe that dim(O) = dim(x)
where x is any element x ∈ O.

2.1 Representing nominal orbits

We represent nominal sets as collections of single orbits. The finite representation
of single orbits is based on the theory of [4], which uses the technical notions of
restriction and extension. We only briefly report their definitions here. However,
the reader can safely move to the concrete representation theory in Section 3
with only a superficial understanding of Theorem 2 below.

The restriction of an element π ∈ G to a subset C ⊆ D, written as π|C , is
the restriction of the function π : D → D to the domain C. The restriction of a
group G to a subset C ⊆ D is defined as G|C = {π|C | π ∈ G, Cπ = C}. The
extension of a subgroup S ≤ G|C is defined as extG(S) = {π ∈ G | π|C ∈ S}.
For C ⊆ D and S ≤ G|C , define [C, S]ec = {{sg | s ∈ extG(S)} | g ∈ G}, i.e., the
set of right cosets of extG(S) in G. Then [C, S]ec is a single-orbit nominal set.

Using the above, we can formulate the representation theory from [4] that we
will use in the current paper. This gives a finite description for all single-orbit
nominal sets X, namely a finite set C together with some of its symmetries.

Theorem 2. Let X be a single-orbit nominal set for a data symmetry (D, G)
that admits least supports and let C ⊆ D be the least support of some element
x ∈ X. Then there exists a subgroup S ≤ G|C such that X ∼= [C, S]ec.

The proof [4] uses a bit of category theory: it establishes an equivalence of
categories between single-orbit sets and the pairs (C, S). We will not use the
language of category theory much in order to keep the paper self-contained.

3 Representation in the total order symmetry

This section develops a concrete representation of nominal sets over the total
order symmetry, as well as their equivariant maps and products. It is based on
the abstract representation theory from Section 2.1. From now on, by nominal
set we always refer to a nominal set over the total order symmetry. Hence, our
data domain is Q and we take G to be the group of monotone bijections.



3.1 Orbits and nominal sets

From the representation in Section 2.1, we find that any single-orbit set X can
be represented as a tuple (C, S). Our first observation is that the finite group of
‘local symmetries’, S, in this representation is always trivial, i.e., S = I, where
I = {1} is the trivial group. This follows from the following lemma and S ≤ G|C .

Lemma 3. For every finite subset C ⊂ Q, we have G|C = I.

Immediately, we see that (C, S) = (C, I), and hence that the orbit is fully rep-
resented by the set C. A further consequence of Lemma 3 is that each element
of an orbit can be uniquely identified by its least support. This leads us to the
following characterisation of [C, I]ec.

Lemma 4. Given a finite subset C ⊂ Q, we have [C, I]ec ∼= P#C(Q).

By Theorem 2 and the above lemmas, we can represent an orbit by a single
integer n, the size of the least support of its elements. This naturally extends
to (orbit-finite) nominal sets with multiple orbits by using a multiset of natural
numbers, representing the size of the least support of each of the orbits. These
multisets are formalised here as functions f : N→ N.

Definition 5. Given a function f : N→ N, we define a nominal set [f ]o by

[f ]o =
⋃
n∈N

1≤i≤f(n)

{i} × Pn(Q).

Proposition 6. For every orbit-finite nominal set X, there is a function f : N→
N such that X ∼= [f ]o and the set {n | f(n) 6= 0} is finite. Furthermore, the map-
ping between X and f is one-to-one up to isomorphism of X when restricting to
f : N→ N for which the set {n | f(n) 6= 0} is finite.

The presentation in terms of a function f : N → N enforces that there are only
finitely many orbits of any given dimension. The first part of the above proposi-
tion generalises to arbitrary nominal sets by replacing the codomain of f by the
class of all sets and adapting Definition 5 accordingly. However, the resulting
correspondence will no longer be one-to-one.

As a brief example, let us consider the set Q×Q. The elements (a, b) split in
three orbits, one for a < b, one for a = b and one for a > b. These have dimension
2, 1 and 2 respectively, so the set Q×Q is represented by the multiset {1, 2, 2}.

3.2 Equivariant maps

We show how to represent equivariant maps, using two basic properties. Let
f : X → Y be an equivariant map. The first property is that the direct image of
an orbit (in X) is again an orbit (in Y ), that is to say, f is defined ‘orbit-wise’.
Second, equivariant maps cannot introduce new elements in the support (but
they can drop them). More precisely:



Lemma 7. Let f : X → Y be an equivariant map, and O ⊆ X a single orbit.
The direct image f(O) = {f(x) | x ∈ O} is a single-orbit nominal set.

Lemma 8. Let f : X → Y be an equivariant map between two nominal sets X
and Y . Let x ∈ X and let C be a support of x. Then C supports f(x).

Hence, equivariant maps are fully determined by associating two pieces of in-
formation for each orbit in the domain: the orbit on which it is mapped and a
string denoting which elements of the least support of the input are preserved.
These ingredients are formalised in the first part of the following definition.
The second part describes how these ingredients define an equivariant function.
Proposition 10 then states that every equivariant function can be described in
this way.

Definition 9. Let H = {(I1, F1, O1), . . . , (In, Fn, On)} be a finite set of tuples
where the Ii’s are disjoint single-orbit nominal sets, the Oi’s are single-orbit
nominal sets with dim(Oi) ≤ dim(Ii), and the Fi’s are bit strings of length
dim(Ii) with exactly dim(Oi) ones.

Given a set H as above, we define fH :
⋃
Ii →

⋃
Oi as the unique equivariant

function such that, given x ∈ Ii with least support C, fH(x) is the unique element
of Oi with support {C(j) | Fi(j) = 1}, where Fi(j) is the j-th bit of Fi and C(j)
is the j-th smallest element of C.

Proposition 10. For every equivariant map f : X → Y between orbit-finite
nominal sets X and Y there is a set H as in Definition 9 such that f = fH .

Consider the example function min: P3(Q) → Q which returns the smallest
element of a 3-element set. Note that both P3(Q) and Q are single orbits. Since
for the orbit P3(Q) we only keep the smallest element of the support, we can
thus represent the function min with {(P3(Q), 100,Q)}.

3.3 Products

The product X ×Y of two nominal sets is again a nominal set and hence, it can
be represented itself in terms of the dimension of each of its orbits as shown in
Section 3.1. However, this approach has some disadvantages.

Example 11. We start by showing that the orbit structure of products can be
non-trivial. Consider the product ofX = Q and the set Y = {(a, b) ∈ Q2 | a < b}.
This product consists of five orbits, more than one might naively expect from
the fact that both sets are single-orbit:

{(a, (b, c)) | a, b, c ∈ Q, a < b < c}, {(a, (a, b)) | a, b ∈ Q, a < b},
{(b, (a, c)) | a, b, c ∈ Q, a < b < c}, {(b, (a, b)) | a, b ∈ Q, a < b},
{(c, (a, b)) | a, b, c ∈ Q, a < b < c}.

We find that this product is represented by the multiset {2, 2, 3, 3, 3}. Unfor-
tunately, this is not sufficient to accurately describe the product as it abstracts



away from the relation between its elements with those in X and Y . In particular,
it is not possible to reconstruct the projection maps from such a representation.

The essence of our representation of products is that each orbit O in the
product X × Y is described entirely by the dimension of O together with the
two (equivariant) projections π1 : O → X and π2 : O → Y . This combination of
the orbit and the two projection maps can already be represented using Propo-
sitions 6 and 10. However, as we will see, a combined representation for this has
several advantages. For discussing such a representation, let us first introduce
what it means for tuples of a set and two functions to be isomorphic:

Definition 12. Given nominal sets X,Y, Z1 and Z2, and equivariant functions
l1 : Z1 → X, r1 : Z1 → Y , l2 : Z2 → X and r2 : Z2 → Y , we define (Z1, l1, r1) ∼=
(Z2, l2, r2) if there exists an isomorphism h : Z1 → Z2 such that l1 = l2 ◦ h and
r1 = r2 ◦ h.

Our goal is to have a representation that, for each orbit O, produces a tuple
(A, f1, f2) isomorphic to the tuple (O, π1, π2). The next lemma gives a charac-
terisation that can be used to simplify such a representation.

Lemma 13. Let X and Y be nominal sets and (x, y) ∈ X × Y . If C, Cx, and
Cy are the least supports of (x, y), x, and y respectively, then C = Cx ∪ Cy.

With Proposition 10 we represent the maps π1 and π2 by tuples (O,F1, O1)
and (O,F2, O2) respectively. Using Lemma 13 and the definitions of F1 and F2,
we see that at least one of F1(i) and F2(i) equals 1 for each i.

We can thus combine the strings F1 and F2 into a single string P ∈ {L,R,B}∗
as follows. We set P (i) = L when only F1(i) is 1, P (i) = R when only F2(i) is 1,
and P (i) = B when both are 1. The string P fully describes the strings F1 and
F2. This process for constructing the string P gives it two useful properties. The
number of Ls and Bs in the string gives the size dimension of O1. Similarly, the
number of Rs and Bs in the string gives the dimension of O2. We will call strings
with that property valid. In conclusion, to describe a single orbit of the product
X × Y , a valid string P together with the images of π1 and π2 is sufficient.

Definition 14. Let P ∈ {L,R,B}∗, and O1 ⊆ X, O2 ⊆ Y be single-orbit sets.
Given a tuple (P,O1, O2), where the string P is valid, define

[(P,O1, O2)]t = (P|P |(Q), fH1
, fH2

),

where Hi = {(P|P |(Q), Fi, Oi)} and the string F1 is defined as the string P with
Ls and Bs replaced by 1s and Rs by 0s. The string F2 is similarly defined with
the roles of L and R swapped.

Proposition 15. There exists a one-to-one correspondence between the orbits
O ⊆ X × Y , and tuples (P,O1, O2) satisfying O1 ⊆ X, O2 ⊆ Y , and where P is
a valid string, such that [(P,O1, O2)]t ∼= (O, π1|O, π2|O).



From the above proposition it follows that we can generate the product X×Y
simply by enumerating all valid strings P for all pairs of orbits (O1, O2) of X
and Y . Given this, we can calculate the multiset representation of a product
from the multiset representations of both factors.

Theorem 16. For X ∼= [f ]o and Y ∼= [g]o we have X × Y ∼= [h]o, where

h(n) =
∑

0≤i,j≤n
i+j≥n

f(i)g(j)

(
n

j

)(
j

n− i

)
.

Example 17. To illustrate some aspects of the above representation, let us use
it to calculate the product of Example 11. First, we observe that both Q and
S = {(a, b) ∈ Q2 | a < b} consist of a single orbit. Hence any orbit of the product
corresponds to a triple (P,Q, S), where the string P satisfies |P |L + |P |B =
dim(Q) = 1 and |P |R + |P |B = dim(S) = 2. We can now find the orbits of the
product Q×S by enumerating all strings satisfying these equations. This yields:

– LRR, corresponding to the orbit {(a, (b, c)) | a, b, c ∈ Q, a < b < c},
– RLR, corresponding to the orbit {(b, (a, c)) | a, b, c ∈ Q, a < b < c},
– RRL, corresponding to the orbit {(c, (a, b)) | a, b, c ∈ Q, a < b < c},
– RB, corresponding to the orbit {(b, (a, b)) | a, b ∈ Q, a < b}, and
– BR, corresponding to the orbit {(a, (a, b)) | a, b ∈ Q, a < b}.

Each product string fully describes the corresponding orbit. To illustrate, con-
sider the string BR. The corresponding bit strings for the projection functions
are F1 = 10 and F2 = 11. From the lengths of the string we conclude that the
dimension of the orbit is 2. The string F1 further tells us that the left element of
the tuple consists only of the smallest element of the support. The string F2 indi-
cates that the right element of the tuple is constructed from both elements of the
support. Combining this, we find that the orbit is {(a, (a, b)) | a, b ∈ Q, a < b}.

3.4 Summary

We summarise our concrete representation in the following table. Propositions 6,
10 and 15 correspond to the three rows in the table.

Object Representation

Single orbit O Natural number n = dim(O)

Nominal set X =
⋃

iOi Multiset of these numbers

Map from single orbit f : O → Y The orbit f(O) and a bit string F

Equivariant map f : X → Y Set of tuples (O,F, f(O)), one for
each orbit

Orbit in a product O ⊆ X × Y The corresponding orbits of X and Y ,
and a string P relating their supports

Product X × Y Set of tuples (P,OX , OY ), one for
each orbit



Notice that in the case of maps and products, the orbits are inductively
represented using the concrete representation. As a base case we can represent
single orbits by their dimension.

4 Implementation and Complexity of ONS

The ideas outlined above have been implemented in the C++ library Ons.2

The library can represent orbit-finite nominal sets and their products, (disjoint)
unions, and maps. A full description of the possibilities is given in the documen-
tation included with Ons.

As an example, the following program computes the product from Exam-
ple 11. Initially, the program creates the nominal set A, containing the entirety
of Q. Then it creates a nominal set B, such that it consists of the orbit containing
the element (1, 2) ∈ Q×Q. For this, the library determines to which orbit of the
product Q×Q the element (1, 2) belongs, and then stores a description of the or-
bit as described in Section 3. Note that this means that it internally never needs
to store the element used to create the orbit. The function nomset_product then
uses the enumeration of product strings mentioned in Section 3.3 to calculate
the product of A and B. Finally, it prints a representative element for each of the
orbits in the product. These elements are constructed based on the description
of the orbits stored, filled in to make their support equal to sets of the form
{1, 2, . . . , n}.

nomset <rational > A = nomset_rationals ();

nomset <pair <rational , rational >> B({ rational (1), rational (2)});

auto AtimesB = nomset_product(A, B); // compute the product

for (auto orbit : AtimesB)

cout << orbit.getElement () << " ";

Running this gives the following output (‘/1’ signifies the denominator):

(1/1 ,(2/1 ,3/1)) (1/1 ,(1/1 ,2/1)) (2/1 ,(1/1 ,3/1))

(2/1 ,(1/1 ,2/1)) (3/1 ,(1/1 ,2/1))

Internally, orbit is implemented following the theory presented in Section 3,
storing the dimension of the orbit it represents. It also contains sufficient infor-
mation to reconstruct elements given their least support, such as the product
string for orbits resulting from a product. The class nomset then uses a standard
set data structure to store the collection of orbits contained in the nominal set
it represents.

In a similar way, eqimap stores equivariant maps by associating each orbit in
the domain with the image orbit and the string representing which of the least
support to keep. This is stored using a map data structure. For both nominal sets
and equivariant maps, the underlying data structure is currently implemented
using trees.

2 Ons can be found at https://github.com/davidv1992/ONS



4.1 Complexity of operations

Using the concrete representation of nominal sets, we can determine the com-
plexity of common operations. To simplify such an analysis, we will make the
following assumptions:

– The comparison of two orbits takes O(1).
– Constructing an orbit from an element takes O(1).
– Checking whether an element is in an orbit takes O(1).

These assumptions are justified as each of these operations takes time propor-
tional to the size of the representation of an individual orbit, which in practice is
small and approximately constant. For instance, the orbit Pn(Q) is represented
by just the integer n and its type.

Theorem 18. If nominal sets are implemented with a tree-based set structure
(as in Ons), the complexity of the following set operations is as follows. Recall
that N(X) denotes the number of orbits of X. We use p and f to denote functions
implemented in whatever way the user wants, which we assume to take O(1) time.
The software assumes these are equivariant, but this is not verified.

Operation Complexity
Test x ∈ X O(log N(X))

Test X ⊆ Y O(min(N(X) + N(Y ),N(X) log N(Y )))
Calculate X ∪ Y O(N(X) + N(Y ))
Calculate X ∩ Y O(N(X) + N(Y ))

Calculate {x ∈ X | p(x)} O(N(X))
Calculate {f(x) | x ∈ X} O(N(X) log N(X))

Calculate X × Y O(N(X × Y )) ⊆ O(3dim(X)+dim(Y ) N(X) N(Y ))

Proof. Since most parts are proven similarly, we only include proofs for the first
and last item.

Membership. To decide x ∈ X, we first construct the orbit containing x,
which is done in constant time. Then we use a logarithmic lookup to decide
whether this orbit is in our set data structure. Hence, membership checking is
O(log(N(X))).

Products. Calculating the product of two nominal sets is the most complicated
construction. For each pair of orbits in the original sets X and Y , all product
orbits need to be generated. Each product orbit itself is constructed in constant
time. By generating these orbits in-order, the resulting set takes O(N(X × Y ))
time to construct.

We can also give an explicit upper bound for the number of orbits in terms
of the input. Recall that orbits in a product are represented by strings of length
at most dim(X) + dim(Y ). (If the string is shorter, we pad it with one of the
symbols.) Since there are three symbols (L,R and B), the product of X and
Y will have at most 3dim(X)+dim(Y ) N(X) N(Y ) orbits. It follows that taking
products has time complexity of O(3dim(X)+dim(Y ) N(X) N(Y )). ut



5 Results and evaluation in automata theory

In this section we consider applications of nominal sets to automata theory. As
mentioned in the introduction, nominal sets are used to formalise languages over
infinite alphabets. These languages naturally arise as the semantics of register
automata. The definition of register automata is not as simple as that of ordinary
finite automata. Consequently, transferring results from automata theory to this
setting often requires non-trivial proofs. Nominal automata, instead, are defined
as ordinary automata by replacing finite sets with orbit-finite nominal sets. The
theory of nominal automata is developed in [4] and it is shown that many, but
not all, algorithms from automata theory transfer to nominal automata.

As an example we consider the following language on rational numbers:

Lint = {a1b1 · · · anbn | ai, bi ∈ Q, ai < ai+1 < bi+1 < bi for all i}.

We call this language the interval language as a word w ∈ Q∗ is in the language
when it denotes a sequence of nested intervals. This language contains arbitrarily
long words. For this language it is crucial to work with an infinite alphabet as
for each finite set C ⊂ Q, the restriction Lint ∩C∗ is just a finite language. Note
that the language is equivariant: w ∈ Lint ⇐⇒ wg ∈ Lint for any monotone
bijection g, because nested intervals are preserved by monotone maps.3 Indeed,
Lint is a nominal set, although it is not orbit-finite.

Informally, the language Lint can be accepted by the automaton depicted in
Figure 1. Here we allow the automaton to store rational numbers and compare
them to new symbols. For example, the transition from q2 to q3 is taken if any
value c between a and b is read and then the currently stored value a is replaced
by c. For any other value read at state q2 the automaton transitions to the sink
state q4. Such a transition structure is made precise by the notion of nominal
automata.

q0 q1(a) q2(a, b) q3(a, b)

q4

a b > a

b ≤ a

a < c < b
a← c

a < c < b
b← c

c ≤ a c ≥ b
c ≤ a

c ≥ b

a

Fig. 1. Example automaton that accepts the language Lint.

3 The G-action on words is defined point-wise: (w1 . . . wn)g = (w1g) . . . (wng).



Definition 19. A nominal language is an equivariant subset L ⊆ A∗ where A
is an orbit-finite nominal set.

Definition 20. A nominal deterministic finite automaton is a tuple (S,A, F, δ),
where S is an orbit-finite nominal set of states, A is an orbit-finite nominal set
of symbols, F ⊆ S is an equivariant subset of final states, and δ : S × A→ S is
the equivariant transition function.

Given a state s ∈ S, we define the usual acceptance condition: a word w ∈ A∗
is accepted if w denotes a path from s to a final state.

The automaton in Figure 1 can be formalised as a nominal deterministic
finite automaton as follows. Let S = {q0, q4} ∪ {q1(a) | a ∈ Q} ∪ {q2(a, b) | a <
b ∈ Q} ∪ {q3(a, b) | a < b ∈ Q} be the set of states, where the group action
is defined as one would expect. The transition we described earlier can now be
formally defined as δ(q2(a, b), c) = q3(c, b) for all a < c < b ∈ Q. By defining δ on
all states accordingly and defining the final states as F = {q2(a, b) | a < b ∈ Q},
we obtain a nominal deterministic automaton (S,Q, F, δ). The state q0 accepts
the language Lint.

Testing. We implement two algorithms on nominal automata, minimisation
and learning, to benchmark Ons. The performance of Ons is compared to two
existing libraries for computing with nominal sets, Nλ and Lois. The following
automata will be used.

Random automata. As a primary test suite, we generate random automata as
follows. The input alphabet is always Q and the number of orbits and dimension
k of the state space S are fixed. For each orbit in the set of states, its dimension
is chosen uniformly at random between 0 and k, inclusive. Each orbit has a
probability 1

2 of consisting of accepting states.
To generate the transition function δ, we enumerate the orbits of S ×Q and

choose a target state uniformly from the orbits S with small enough dimension.
The bit string indicating which part of the support is preserved is then sampled
uniformly from all valid strings. We will denote these automata as randN(S),k.
The choices made here are arbitrary and only provide basic automata. We note
that the automata are generated orbit-wise and this may favour our tool.

Structured automata. Besides random automata we wish to test the algo-
rithms on more structured automata. We define the following automata.

FIFO(n) Automata accepting valid traces of a finite FIFO data structure of size n. The
alphabet is defined by two orbits: {Put(a) | a ∈ Q} and {Get(a) | a ∈ Q}.

ww(n) Automata accepting the language of words of the form ww, where w ∈ Qn.
Lmax The language Lmax = {wa ∈ Q∗ | a = max(w1, . . . , wn)} where the last

symbol is the maximum of previous symbols.
Lint The language accepting a series of nested intervals, as defined above.



In Table 1 we report the number of orbits for each automaton. The first two
classes of automata were previously used as test cases in [21]. These two classes
are also equivariant w.r.t. the equality symmetry. The extra bit of structure
allows the automata to be encoded more efficiently, as we do not need to encode
a transition for each orbit in S×A. Instead, a more symbolic encoding is possible.
Both Lois and Nλ allow to use this more symbolic representation. Our tool,
Ons, only works with nominal sets and the input data needs to be provided
orbit-wise. Where applicable, the automata listed above were generated using
the same code as used in [21], ported to the other libraries as needed.

5.1 Minimising nominal automata

For languages recognised by nominal DFAs, a Myhill-Nerode theorem holds
which relates states to right congruence classes [4]. This guarantees the exis-
tence of unique minimal automata. We say an automaton is minimal if its set
of states has the least number of orbits and each orbit has the smallest dimen-
sion possible.4 We generalise Moore’s minimisation algorithm to nominal DFAs
(Algorithm 1) and analyse its time complexity using the bounds from Section 4.

Algorithm 1 Moore’s minimisation algorithm for nominal DFAs

Require: Nominal automaton (S,A, F, δ).
1: i← 0, ≡−1 ← S × S, ≡0 ← F × F ∪ (S\F )× (S\F )
2: while ≡i 6= ≡i−1 do
3: ≡i+1 = {(q1, q2) | (q1, q2) ∈ ≡i ∧ ∀a ∈ A, (δ(q1, a), δ(q2, a)) ∈ ≡i}
4: i← i+ 1
5: end while
6: E ← S/≡i

7: FE ← {e ∈ E | ∀s ∈ e, s ∈ F}
8: Let δE be the map such that, if s ∈ e and δ(s, a) ∈ e′, then δE(e, a) = e′.
9: return (E,A, FE , δE).

Theorem 21. The runtime complexity of Moore’s algorithm on nominal deter-
ministic automata is O(35kkN(S)3 N(A)), where k = dim(S ∪A).

Proof. This is shown by counting operations, using the complexity results of set
operations stated in Theorem 18. We first focus on the while loop on lines 2
through 5. The runtime of an iteration of the loop is determined by line 3, as
this is the most expensive step. Since the dimensions of S and A are at most
k, computing S × S × A takes O(N(S)2 N(A)35k). Filtering S × S using that
then takes O(N(S)232k). The time to compute S×S×A dominates, hence each
iteration of the loop takes O(N(S)2 N(A)35k).

4 Abstractly, an automaton is minimal if it has no proper quotients. Minimal deter-
ministic automata are unique up to isomorphism.



Next, we need to count the number of iterations of the loop. Each iteration
of the loop gives rise to a new partition, which is a refinement of the previous
partition. Furthermore, every partition generated is equivariant. Note that this
implies that each refinement of the partition does at least one of two things:
distinguish between two orbits of S previously in the same element(s) of the
partition, or distinguish between two members of the same orbit previously in
the same element of the partition. The first can happen only N(S) − 1 times,
as after that there are no more orbits lumped together. The second can only
happen dim(S) times per orbit, because each such a distinction between ele-
ments is based on splitting on the value of one of the elements of the support.
Hence, after dim(S) times on a single orbit, all elements of the support are
used up. Combining this, the longest chain of partitions of S has length at most
O(kN(S)).

Since each partition generated in the loop is unique, the loop cannot run
for more iterations than the length of the longest chain of partitions on S. It
follows that there are at most O(kN(S)) iterations of the loop, giving the loop
a complexity of O(kN(S)3 N(A)35k)

The remaining operations outside the loop have a lower complexity than
that of the loop, hence the complexity of Moore’s minimisation algorithm for a
nominal automaton is O(kN(S)3 N(A)35k).

The above theorem shows in particular that minimisation of nominal au-
tomata is fixed-parameter tractable (FPT) with the dimension as fixed parame-
ter. The complexity of Algorithm 1 for nominal automata is very similar to the
O((#S)3#A) bound given by a naive implementation of Moore’s algorithm for
ordinary DFAs. This suggest that it is possible to further optimise an implemen-
tation with similar techniques used for ordinary automata.

Implementations. We implemented the minimisation algorithm in Ons. For
Nλ and Lois we used their implementations of Moore’s minimisation algo-
rithm [17,18,19]. For each of the libraries, we wrote routines to read in an
automaton from a file and, for the structured test cases, to generate the re-
quested automaton. For Ons, all automata were read from file. The output of
these programs was manually checked to see if the minimisation was performed
correctly.

Results. The results (shown in Table 1) for random automata show a clear
advantage for Ons, which is capable of running all supplied testcases in less
than one second. This in contrast to both Lois and Nλ, which take more than
2 hours on the largest random automata.

The results for structured automata show a clear effect of the extra structure.
Both Nλ and Lois remain capable of minimising the automata in reasonable
amounts of time for larger sizes. In contrast, Ons benefits little from the extra
structure. Despite this, it remains viable: even for the larger cases it falls be-
hind significantly only for the largest FIFO automaton and the two largest ww
automata.



Type N(S) N(Smin) Ons Nλ Lois
Gen.

rand5,1 (x10) 5 n/a 0.02s n/a 0.82s 3.14s
rand10,1 (x10) 10 n/a 0.03s n/a 17.03s 1m 32s
rand10,2 (x10) 10 n/a 0.09s n/a 35m 14s > 60m
rand15,1 (x10) 15 n/a 0.04s n/a 1m 27s 10m 20s
rand15,2 (x10) 15 n/a 0.11s n/a 55m 46s > 60m
rand15,3 (x10) 15 n/a 0.46s n/a > 60m > 60m

FIFO(2) 13 6 0.01s 0.01s 1.37s 0.24s
FIFO(3) 65 19 0.38s 0.09s 11.59s 2.4s
FIFO(4) 440 94 39.11s 1.60s 1m 16s 14.95s
FIFO(5) 3686 635 > 60m 39.78s 6m 42s 1m 11s

ww(2) 8 8 0.00s 0.00s 0.14s 0.03s
ww(3) 24 24 0.19s 0.02s 0.88s 0.16s
ww(4) 112 112 26.44s 0.25s 3.41s 0.61s
ww(5) 728 728 > 60m 6.37s 10.54s 1.80s

Lmax 5 3 0.00s 0.00s 2.06s 0.03s
Lint 5 5 0.00s 0.00s 1.55s 0.03s

Table 1. Running times for Algorithm 1 implemented in the three libraries. N(S) is
the size of the input and N(Smin) the size of the minimal automaton. For Ons, the
time used to generate the automaton is reported separately (in grey).

5.2 Learning nominal automata

Another application that we implemented in Ons is automata learning. The aim
of automata learning is to infer an unknown regular language L. We use the
framework of active learning as set up by Dana Angluin [2] where a learning
algorithm can query an oracle to gather information about L. Formally, the
oracle can answer two types of queries:

1. membership queries, where a query consists of a word w ∈ A∗ and the oracle
replies whether w ∈ L, and

2. equivalence queries, where a query consists of an automatonH and the oracle
replies positively if L(H) = L or provides a counterexample if L(H) 6= L.

With these queries, the L? algorithm can learn regular languages efficiently [2].
In particular, it learns the unique minimal automaton for L using only finitely
many queries. The L? algorithm has been generalised to νL? in order to learn
nominal regular languages [21]. In particular, it learns a nominal DFA (over
an infinite alphabet) using only finitely many queries. We implement νL? in
the presented library and compare it to its previous implementation in Nλ. The
algorithm is not polynomial, unlike the minimisation algorithm described above.
However, the authors conjecture that there is a polynomial algorithm.5 For the
correctness, termination, and comparison with other learning algorithms see [21].

5 See joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html

for a sketch of the polynomial algorithm.



Implementations. Both implementations in Nλ and Ons are direct implemen-
tations of the pseudocode for νL? with no further optimisations. The authors of
Lois implemented νL? in their library as well.6 They reported similar perfor-
mance as the implementation in Nλ (private communication). Hence we focus
our comparison on Nλ and Ons. We use the variant of νL? where counterexam-
ples are added as columns instead of prefixes.

The implementation in Nλ has the benefit that it can work with different
symmetries. Indeed, the structured examples, FIFO and ww, are equivariant
w.r.t. the equality symmetry as well as the total order symmetry. For that rea-
son, we run the Nλ implementation using both the equality symmetry and the
total order symmetry on those languages. For the languages Lmax, Lint and the
random automata, we can only use the total order symmetry.

To run the νL? algorithm, we implement an external oracle for the member-
ship queries. This is akin to the application of learning black box systems [29].
For equivalence queries, we constructed counterexamples by hand. All imple-
mentations receive the same counterexamples. We measure CPU time instead of
real time, so that we do not account for the external oracle.

Results. The results (Table 2) for random automata show an advantage for
Ons. Additionally, we report the number of membership queries, which can vary
for each implementation as some steps in the algorithm depend on the internal
ordering of set data structures.

In contrast to the case of minimisation, the results suggest that Nλ cannot
exploit the logical structure of FIFO(n), Lmax and Lint as it is not provided a
priori. For ww(2) we inspected the output on Nλ and saw that it learned some
logical structure (e.g., it outputs {(a, b) | a 6= b} as a single object instead of
two orbits {(a, b) | a < b} and {(a, b) | b < a}). This may explain why Nλ is
still competitive. For languages which are equivariant for the equality symmetry,
the Nλ implementation using the equality symmetry can learn with much fewer
queries. This is expected as the automata themselves have fewer orbits. It is
interesting to see that these languages can be learned more efficiently by choosing
the right symmetry.

6 Related work

As stated in the introduction, Nλ [17] and Lois [18] use first-order formulas to
represent nominal sets and use SMT solvers to manipulate them. This makes
both libraries very flexible and they indeed implement the equality symmetry
as well as the total order symmetry. As their representation is not unique, the
efficiency depends on how the logical formulas are constructed. As such, they do
not provide complexity results. In contrast, our direct representation allows for
complexity results (Section 4) and leads to different performance characteristics
(Section 5).

6 Can be found on github.com/eryxcc/lois/blob/master/tests/learning.cpp



Ons Nλord Nλeq

Model N(S) dim(S) time MQs time MQs time MQs

rand5,1 4 1 2m 7s 2321 39m 51s 1243
rand5,1 5 1 0.12s 404 40m 34s 435
rand5,1 3 0 0.86s 499 30m 19s 422
rand5,1 5 1 > 60m n/a > 60m n/a
rand5,1 4 1 0.08s 387 34m 57s 387

FIFO(1) 3 1 0.04s 119 3.17s 119 1.76s 51
FIFO(2) 6 2 1.73s 2655 6m 32s 3818 40.00s 434
FIFO(3) 19 3 46m 34s 298400 > 60m n/a 34m 7s 8151

ww(1) 4 1 0.42s 134 2.49s 77 1.47s 30
ww(2) 8 2 4m 26s 3671 3m 48s 2140 30.58s 237
ww(3) 24 3 > 60m n/a > 60m n/a > 60m n/a

Lmax 3 1 0.01s 54 3.58s 54
Lint 5 2 0.59s 478 1m 23s 478

Table 2. Running times and number of membership queries for the νL? algorithm. For
Nλ we used two version: Nλord uses the total order symmetry Nλeq uses the equality
symmetry.

A second big difference is that both Nλ and Lois implement a “programming
paradigm” instead of just a library. This means that they overload natural pro-
gramming constructs in their host languages (Haskell and C++ respectively).
For programmers this means they can think of infinite sets without having to
know about nominal sets.

It is worth mentioning that an older (unreleased) version of Nλ implemented
nominal sets with orbits instead of SMT solvers [3]. However, instead of charac-
terising orbits (e.g., by its dimension), they represent orbits by a representative
element. The authors of Nλ have reported that the current version is faster [17].

The theoretical foundation of our work is the main representation theorem
in [4]. We improve on that by instantiating it to the total order symmetry and
distil a concrete representation of nominal sets. As far as we know, we provide
the first implementation of the representation theory in [4].

Another tool using nominal sets is Mihda [12]. Here, only the equality sym-
metry is implemented. This tool implements a translation from π-calculus to
history-dependent automata (HD-automata) with the aim of minimisation and
checking bisimilarity. The implementation in OCaml is based on named sets,
which are finite representations for nominal sets. The theory of named sets is
well-studied and has been used to model various behavioural models with local
names. For those results, the categorical equivalences between named sets, nom-
inal sets and a certain (pre)sheaf category have been exploited [8,9]. The total
order symmetry is not mentioned in their work. We do, however, believe that
similar equivalences between categories can be stated. Interestingly, the product
of named sets is similar to our representation of products of nominal sets: pairs
of elements together with data which denotes the relation between data values.



Fresh OCaml [27] and Nominal Isabelle [28] are both specialised in name-
binding and α-conversion used in proof systems. They only use the equality
symmetry and do not provide a library for manipulating nominal sets. Hence
they are not suited for our applications.

On the theoretical side, there are many complexity results for register au-
tomata [15,23]. In particular, we note that problems such as emptiness and
equivalence are NP-hard depending on the type of register automaton. This
does not easily compare to our complexity results for minimisation. One differ-
ence is that we use the total order symmetry, where the local symmetries are
always trivial (Lemma 3). As a consequence, all the complexity required to deal
with groups vanishes. Rather, the complexity is transferred to the input of our
algorithms, because automata over the equality symmetry require more orbits
when expressed over the total order symmetry. Another difference is that register
automata allow for duplicate values in the registers. In nominal automata, such
configurations will be encoded in different orbits. An interesting open problem
is whether equivalence of unique-valued register automata is in Ptime [23].

Orthogonal to nominal automata, there is the notion of symbolic automata
[10,20]. These automata are also defined over infinite alphabets but they use
predicates on transitions, instead of relying on symmetries. Symbolic automata
are finite state (as opposed to infinite state nominal automata) and do not allow
for storing values. However, they do allow for general predicates over an infinite
alphabet, including comparison to constants.

7 Conclusion and Future Work

We presented a concrete finite representation for nominal sets over the total
order symmetry. This allowed us to implement a library, Ons, and provide com-
plexity bounds for common operations. The experimental comparison of Ons
against existing solutions for automata minimisation and learning show that our
implementation is much faster in many instances. As such, we believe Ons is a
promising implementation of nominal techniques.

A natural direction for future work is to consider other symmetries, such as
the equality symmetry. Here, we may take inspiration from existing tools such
as Mihda (see Section 6). Another interesting question is whether it is possible
to translate a nominal automaton over the total order symmetry which accepts
an equality language to an automaton over the equality symmetry. This would
allow one to efficiently move between symmetries. Finally, our techniques can
potentially be applied to timed automata by exploiting the intriguing connection
between the nominal automata that we consider and timed automata [5].
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3. Bojańczyk, M., Braud, L., Klin, B., Lasota, S.: Towards nominal compu-
tation. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2012. pp. 401–412 (2012).
https://doi.org/10.1145/2103656.2103704
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